Saprolegnia infection and clinical findings in trout farms (Oncorhynchus mykiss). Technical note
Abstract
The spread of Saprolegnia spp. can increase mortality rates in fish farms, the surrounding environment and natural populations; therefore, detailed surveys to track the spread of pathogenic Saprolegnia and their distribution from fish farms to the natural environment are critical and should be conducted regularly. In this study, Saprolegnia spp. were detected in fish samples collected from rainbow trout (Oncorhynchus mykiss Walbaum, 1792) farms in the Southeast Anatolian region. 40 trout farms in different provinces of the region were visited and 1000 samples were examined. 25 fish with an average live weight of 100–150 g were collected from each farm and the clinical picture was established after macroscopic examination of the fish samples in the laboratory. In order to detect and identify Saprolegnia growth in the culture environment, the fungus was grown by seeding on Anacker–Ordal (AO) 18°C agar for 5–7 days. As a result of the research, erosion, ulcer formation, increased mucus and fungus (Saprolegnia spp.) were detected in 798 skin samples. Anaemia in the gills, anaemia, hyperemia, oedema in the secondary lamellae and fungus (Saprolegnia spp.) were found in 341 samples. As a result, Saprolegnia spp. was found in farms located in this region. It has been established that in order to protect themselves from this infection, farms in the region must take care not to damage the fish bodies, remove dead and sick fish, not leave excess feed, avoid mechanical damage, pay attention to the deterioration of the mucoid layer, minimise stress factors by avoiding excessive stocking.
Downloads
References
Kebede B, Habtamu T. Isolation and identification of Edwardsiella tarda from Lake Zeway and Langano, southern Oromia, Ethiopia. Fish. Aquac. J. [Internet]. 2016 [consultado 20 Abr. 2024]; 7(4):184. Disponible en: https://goo.su/KqN6Yv
Turkish Stastical Institute [Internet]. Çankaya (Ankara, Türkiye): TurkStat; 2024 [consultado 3 Jun. 2024]. Disponible en: https://goo.su/MSe9j
Khoo L. Fungal diseases in fish. Semin. Avian Exot. Pet Med. [Internet]. 2000; 9(2):102–111. doi: https://doi.org/d4kdwx
Shaheen A, El Asely AM, Latif AEL, Moustafa MMA, Elsaied HE. Saprolegniosis in goldfish (Carassius auratus) associated with novel strain; molecular characterization and electron scanning. Egypt. J. Aquac. [Internet]. 2015 [consultado 3 Jun. 2023]; 5(2):1–12. Disponible en: https://goo.su/zebXHw
Baldauf SL, Roger AJ, Wenk–Siefert I, Doolittle WF. A kingdom–level phylogeny of eukaryotes based on combined protein data. Science [Internet]. 2000; 290 (5493):972–977. doi: https://doi.org/cdbd8d
Thoen E, Vrålstad T, Rolen E, Kristensen R, Evensen Ø, Skaar I. Saprolegnia species in Norwegian salmon hatcheries: Field survey identifies S. diclina sub–clade IIIB as the dominating taxon. Dis. Aquat. Org. [Internet]. 2015; 114(3):189–198. doi: https://doi.org/f7ftwg
Roberts RJ. The mycology of Teleosts. En: Roberts RJ, editor. Fish Pathology. 4th ed. Hoboken (NJ, EUA): Blackwell Publishing; 2012. p. 383–401. doi: https://doi.org/nnq7
Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Löbach L, Christie J, van den Ackerveken G, Bottin A, Bulone V, Díaz–Moreno SM, Dumas B, Fan L, Gaulin E, Govers F, Grenville–Briggs LJ, Horner NR, Levin JZ, Mammella M, Meijer HJG, Morris P, NUsbaum C, Oome S, Phillips AJ, van Rooyen D, Rzeszutek E, Saraiva M, Secombes CJ, Seidl MF, Snel B, Stassen JHM, Sykes S, Tripathy S, van den Berg H, Vega–Arreguin JC, Wawra S, Young SK, Zeng Q, Dieguez–Uribeondo, Russ C, Tyler BM, van West P. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genetics [Internet]. 2013; 9(6):e1003272. doi: https://doi.org/f22xvj
Mahfouz NB, Moustafa E, Kassab M, Marzouk W. Seasonal screening of the mycotic infections of cultured freshwater fishes in Kafr El–Sheikh governorate. Slov. Vet. Res. [Internet]. 2019; 56(22):321–323. doi: https://doi.org/g8njw5
Korkea–aho T, Wiklund T, Engblom C, Vainikka A, Viljamaa–Dirks S. Detection and quantification of the oomycete Saprolegnia parasitica in aquaculture environments. Microorganisms [Internet]. 2022; 10(11):2186. doi: https://doi.org/nnq9
Sandoval–Sierra JV, Latif–Eugenin F, Martín MP, Zaror L, Diéguez–Uribeondo J. Saprolegnia species affecting the salmonid aquaculture in Chile and their associations with fish development stage. Aquaculture [Internet]. 2014; 434:462–469. doi: https://doi.org/f6qdpc
Loh R. Wet preparation technique for fish diagnostics. Comp. Animal [Internet]. 2014; 19(10):539–540. doi: https://doi.org/g8njw6
Özcan F, Arserim NB. Fungal diseases in fish. BSJ Agri. [Internet]. 2022; 5(1):48–52. doi: https://doi.org/g8njw7
Earle G, Hintz W. New approaches for controlling Saprolegnia parasitica, the causal agent of a devastating fish disease. Trop. Life Sci. Res. [Internet]. 2014 [consultado 3 Jun. 2023]; 25(2):101–109. PMID: 27073602. Disponible en: https://goo.su/rDCu2z
Abou El Atta ME. Saprolegniosis in freshwater cultured tilapia nilotica (Oreochromis niloticus) and trial for control by using bafry d50/500 [Internet]. En: Elghobashy H, Fitzsimmons K, Diab AS, editors. 8th International Symposium on Tilapia in Aquaculture 12 – 14 Oct. 2008; Abbassa, Egypt. Corvallis (Oregon, EUA): AQUAFISH Collaborative Research Support Program: 2008 [consultado 11 Feb. 2024]; 1403–1418. Disponible en: https://goo.su/t8jAab
Touhali IS. Isolation and identification of Saprolegnia parasitica and other fungi from farms fishes in the province of Wasit / Iraq. J. Global Pharma Technol. [Internet]. 2018 [consultado 3 Jun. 2023]; 10(05):135–142. Disponible en: https://goo.su/AdHHu
Mahboub HH, Shaheen AA. Mycological and histopathological identification of potential fish pathogens in Nile tilapia. Aquaculture [Internet]. 2021: 530(7):735849. doi: https://doi.org/g8njw8
El Gamal SA, Adawy RS, Zaki VH, Abdelkhalek A, Zahran E. Prevalence and genetic analyses of Saprolegnia strains isolated from Nile tilapia farms at northern Egypt. Aquaculture [Internet]. 2023; 563(Pt. 1):738946. doi: https://doi.org/g5ktdt
Gozlan RE, Marshall W, Lilje O, Jessop C, Gleason FH, Andreou D. Current ecological understanding of fungal–like pathogens of fish: what lies beneath? Front. Microbiol. [Internet]. 2014; 5(62):1–5. doi: https://doi.org/g8njw9
Sformo TL, de la Bastide PY, LeBlanc J, Givens GH, Adams B, Seigle JC, Kunaknana SC, Moulton LL, Hintz WE. Temperature response and salt tolerance of the opportunistic pathogen Saprolegnia parasitica: implications for the broad whitefish subsistence fishery. Arct. Antarct. Alp. Res. [Internet]. 2021; 53(1):271–285. doi: https://doi.org/g8njxb
Liu S, Song P, Ou R, Fang W, Lin M, Ruan J, Yang X, Hu K. Sequence analysis and typing of Saprolegnia strains isolated from freshwater fish from southern Chinese regions. Aquacult. Fish. [Internet]. 2017; 2(5):227–233. doi: https://doi.org/g8njxc
Sarowar MN, Cusack R, Duston J. Saprolegnia molecular phylogeny among farmed teleosts in Nova Scotia, Canada. J. Fish Dis. [Internet]. 2019; 42(12):1745–1760. doi: https://doi.org/g8njxd
de la Bastide PY, Leung WL, Hintz WE. Species composition of the genus Saprolegnia in fin fish aquaculture environments, as determined by nucleotide sequence analysis of the nuclear rDNA ITS regions. Fungal Biol. [Internet]. 2015; 119(1):27–43. doi: https://doi.org/f62bxp
Pavić D, Miljanović A, Grbin D, Šver L, Vladušić T, Galuppi R, Tedesco P, Bielen A. Identification and molecular characterization of oomycete isolates from trout farms in Croatia, and their upstream and downstream water environments. Aquaculture [Internet]. 2021; 540:736652. doi: https://doi.org/g8njxf
Copyright (c) 2024 Filiz Özcan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.