Identification of Staphylococcus warneri from rainbow trout (Oncorhynchus mykiss Walbaum, 1792) using proteomics–based MALDI–TOF MS

Keywords: Staphylococcus warneri, MALDI–TOF MS, BBL CrystalTMGP, 16S rRNA, sodA

Abstract

Staphylococcus warneri, an opportunistic pathogen, is a causative agent of mortal diseases in rainbow trout farming (Oncorhynchus mykiss), which are of great economic value for Türkiye. In this study, in addition to traditional phenotypic, biochemical, histopathological and genetic methods, a high throughput proteomics based Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI–TOF MS) method was performed for precise identification of S. warneri. Fourteen isolates obtained from skin, gills, liver, spleen and kidney of a total of fifty diseased fish were phenotypically confirmed as S. warneri using the BBL CrystalTMGP identification system. Only 43% of these isolates showed positive PCR amplification for the 16S rRNA and sodA (superoxide dismutase A) gene, while 100% were identified as S. warneri by MALDI–TOF MS technique with high mass score value (m/z) between 2.35 and 3.05. From the comparative data obtained, it was concluded that MALDI–TOF mass spectrometry analysis can be recommended for the definitive confirmation of S. warneri, which showed indistinguishably close similarities with 16S rRNA gene sequences and sodA PCR results. To the best of knowledge, this is the first report to validate the results of phenotypic, biochemical, genetic and histological methods by the MALDI–TOF MS and shows that this is a successful identification approach, providing a high mass score (m/z) with 100% matching for accurate and faster identification of S. warneri. This promising diagnostic technique can identify many different bacterial fish pathogens, although a larger protein mass database for aquatic organisms is needed.

Downloads

Download data is not yet available.

References

Dubois D, Leyssene D, Chacornac JP, Kostrzewa M, Schmit PO, Talon R, Bonnet R, Delmas J. Identification of a variety of Staphylococcus species by matrix–assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Micro. [Internet]. 2010; 48(3):941-945. doi: https://doi.org/bx4fqr DOI: https://doi.org/10.1128/JCM.00413-09

Regecová I, Vyrostková J, Zigo F, Pipová M, Jevinová P, Demjanová S. Identification of Staphylococcus spp. isolated from food by two methods. J. Micro. Biotech. Food Sci. [Internet]. 2021; 10(4):546-552. doi: https://doi.org/n9rj DOI: https://doi.org/10.15414/jmbfs.2021.10.4.546-552

Yılmaz DK, Berik N. Phenotypic and genotypic antibiotic resistance of Staphylococcus warneri and Staphylococcus pasteuri isolated from stuffed mussels. Aquat. Sci. Eng. [Internet]. 2024; 39(3):172-178. doi: https://doi.org/n9rm

Rusev V, Rusenova N, Simeonov R, Stratev D. Staphylococcus warneri and Shewanella putrefaciens coinfection in Siberian sturgeon (Acipenser baerii) and Hybrid sturgeon (Huso husoxAcipenser baerii). J. Microbiol. Exp. [Internet]. 2016; 3(1):00078. doi: https://doi.org/n9rp DOI: https://doi.org/10.15406/jmen.2016.03.00078

Prihanto AA, Nursyam H, Dayuti S, Hayati RL, Afifah J, Rachmawati D. Molecular identification of Staphylococcus sp. isolated from catfish (Clarias sp.) and its antibacterial activities. [Internet]. AIP Conf. Proc. 2019; 2120(1):080007. doi: https://doi.org/n9rr DOI: https://doi.org/10.1063/1.5115745

Xiao Z, Xue M, Wu X, Zeng L, Zhu Y, Jiang N, Fan T, Zhou Y. Isolation and identification of Staphylococcus warneri from diseased Coreius guichenoti. Aquac. Rep. [Internet]. 2022; 22:100988. doi: https://doi.org/n9rt DOI: https://doi.org/10.1016/j.aqrep.2021.100988

Akaylı T, Urku C, Bozkurt, ER. Determination of co–infection in diseased seven khramulya (Capoeta capoeta). KSÜ Tarım ve Doğa Derg. [Internet]. 2019; 22(6):965-971. doi: https://doi.org/n9rw DOI: https://doi.org/10.18016/ksutarimdoga.vi.544200

Musharrafieh R, Tacchi L, Trujeque J, LaPatra S, Salinas I. Staphylococcus warneri, a resident skin commensal of rainbow trout (Oncorhynchus mykiss) with pathobiont characteristics. Vet. Microbiol. [Internet]. 2014; 169(1-2):80-88. doi: https://doi.org/f5s68w DOI: https://doi.org/10.1016/j.vetmic.2013.12.012

Metin S, Kubilay A, Onuk E, Didinen E, Yildirim P. First isolation of Staphylococcus warneri from cultured rainbow trout (Oncorhynchus mykiss) broodstock in Turkey. Bull. Euro. Ass. Fish Pathol. [Internet]. 2014 [cited 20 Aug. 2024]; 34(5):165-174. Available in: https://goo.su/5UdwLG5

Diler Ö, Yılmaz HE, Çağatay IT, Nazıroğlu M, Özil Ö, Kan Ş. Identification and histopathology of Staphylococcus warneri in rainbow trout (Oncorhynchus mykiss). Acta Aqua. Turcica. [Internet]. 2023; 19(3):277-288. doi: https://doi.org/n9rz DOI: https://doi.org/10.22392/actaquatr.1276536

Gil P, Vivas J, Gallardo CS, Rodriguez LA. First isolation of Staphylococcus warneri, from diseased rainbow trout, Oncorhynchus mykiss (Walbaum), in Northwest Spain. J. Fish Dis. [Internet]. 2000; 23(4):295-298. doi: https://doi.org/dt6wz5 DOI: https://doi.org/10.1046/j.1365-2761.2000.00244.x

Kim J, Hong J, Lim JA, Heu S, Roh E. Improved multiplex PCR primers for rapid identification of coagulase–negative staphylococci. Arch. Microbiol. [Internet]. 2018; 200:73-83. doi: https://doi.org/gcvr8c DOI: https://doi.org/10.1007/s00203-017-1415-9

Anwer R, Darami H, Almarri FK, Albogami MA, Alahaydib F. MALDI–TOF MS for rapid analysis of bacterial pathogens causing urinary tract infections in the Riyadh Region. Dis. [Internet]. 2022; 10(4):78. doi: https://doi.org/n9r5 DOI: https://doi.org/10.3390/diseases10040078

Ashfaq MY, Da’na DA, Al–Ghouti, MA. Application of MALDI–TOF MS for identification of environmental bacteria: A review. J. Environ. Manag. [Internet]. 2022; 305(1):114359. doi: https://doi.org/gzm352 DOI: https://doi.org/10.1016/j.jenvman.2021.114359

Surányi BB, Taczman–Brückner A, Mohácsi–Farkas C, Engelhardt T. Rapid identification of bacteria from agricultural environment using MALDI–TOF MS. Acta Aliment. [Internet]. 2023; 52(1):113-120. doi: https://doi.org/gt7wjh DOI: https://doi.org/10.1556/066.2022.00202

Böhme K, Fernández–No IC, Pazos M, Gallardo JM, Barros–Velázquez J, Cañas B, Calo–Mata P. Identification and classification of seafood borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI–TOF MS fingerprinting. Electrophoresis [Internet]. 2013; 34(6):877-887. doi: https://doi.org/f2d2kx DOI: https://doi.org/10.1002/elps.201200532

Strejcek M, Smrhova T, Junkova P, Uhlik O. Whole–cell MALDI–TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front. Microbiol. [Internet]. 2018; 9:1294. doi: https://doi.org/gfb5jq DOI: https://doi.org/10.3389/fmicb.2018.01294

Piamsomboon P, Jaresitthikunchai J, Hung TQ, Roytrakul S, Wongtavatchai J. Identification of bacterial pathogens in cultured fish with a custom peptide database constructed by matrix–assisted laser desorption/ionization time–of–flight mass spectrometry (MALDI–TOF MS). BMC Vet. Res. [Internet]. 2020; 16(52):1-10. doi: https://doi.org/n9r8 DOI: https://doi.org/10.1186/s12917-020-2274-1

Popović NT, Kazazić SP, Bojanić K, Strunjak–Perović I, Čož–Rakovac R. Sample preparation and culture condition effects on MALDI–TOF MS identification of bacteria: A review. Mass Spectron. Rev. [Internet]. 2021; 42(5):1589-1603. doi: https://doi.org/jdrm DOI: https://doi.org/10.1002/mas.21739

Çağatay İT. Use of proteomic–based MALDI–TOF mass spectra for identification of bacterial pathogens in aquaculture: a review. Aquac. Int. [Internet]. 2024; 32:7835-7871. doi: https://doi.org/gt7wjk DOI: https://doi.org/10.1007/s10499-024-01544-x

Boonstra M, Fouz B, van Gelderen B, Dalsgaard I, Madsen L, Jansson E, Amaro C, Haenen, O. Fast and accurate identification by MALDI–TOF of the zoonotic serovar E of Vibrio vulnificus linked to eel culture. J. Fish Dis. [Internet]. 2023; 46(4):445-452. doi: https://doi.org/n9sd DOI: https://doi.org/10.1111/jfd.13756

Puk K, Banach T, Wawrzyniak A, Adaszek L, Ziętek J, Winiarczyk S, Guz L. Detection of Mycobacterium marinum, M. peregrinum, M. fortuitum and M. abscessus in aquarium fish. J. Fish Dis. [Internet]. 2018; 41(1):153-156. doi: https://doi.org/gnccr9 DOI: https://doi.org/10.1111/jfd.12666

Tütmez ÇS, Özbey Ü, Tanrıverdi ES, Aksu Ö, Otlu B, Özbey G. Identification of Aeromonas species in trout in Tunceli province by MALDI–TOF MS method. J. Popul. Ther. Clin. Pharmacol. [Internet]. 2023; 30(11):e346-e354.doi: https://doi.org/n9sf DOI: https://doi.org/10.47750/jptcp.2023.30.11.035

Zakrzewski AJ, Zarzecka U, Chajęcka–Wierzchowska W, Zadernowska A. A comparison of methods for identifying Enterobacterales isolates from fish and prawns. Pathogens [Internet]. 2022; 11(4):410. doi: https://doi.org/n9sh DOI: https://doi.org/10.3390/pathogens11040410

Bridel S, Bourgeon F, Marie A, Saulnier D, Pasek S, Nicolas P, Bernardet JF, Duchaud E. Genetic diversity and population structure of Tenacibaculum maritimum, a serious bacterial pathogen of marine fish: From genome comparisons to high throughput MALDI–TOF typing. Vet. Res. [Internet]. 2020; 51(60):1-17. doi: https://doi.org/n9sm DOI: https://doi.org/10.1186/s13567-020-00782-0

Kazazić SP, Popović NT, Strunjak–Perović I, Florio D, Fioravanti M, Babić S, Čož–Rakovac R. Fish Photobacteriosis–The importance of rapid and accurate identification of Photobacterium damselae subsp. piscicida. J. Fish Dis. [Internet]. 2019; 42(8):1201-1209. doi: https://doi.org/gt7wjf DOI: https://doi.org/10.1111/jfd.13022

Pirollo T, Perolo A, Mantegari S, Barbieri I, Scali F, Alborali GL, Salogni C. Mortality in farmed European eel (Anguilla anguilla) in Italy due to Streptococcus iniae. Acta Vet. Scand. [Internet]. 2023; 65(5):1-8. doi: https://doi.org/n9sp DOI: https://doi.org/10.1186/s13028-023-00669-y

Pérez–Sancho M, Vela AI, Wiklund T, Kostrzewa M, Domínguez L, Fernández Garayzábal JF. Differentiation of Flavobacterium psychrophilum from Flavobacterium psychrophilum–like species by MALDI–TOF mass spectrometry. Res. Vet. Sci. [Internet]. 2017; 115:345-352. doi: https://doi.org/gcqg9h DOI: https://doi.org/10.1016/j.rvsc.2017.06.022

Kačániová M, Klūga A, Kántor A, Medo J, Žiarovská J, Puchalski C, Terentjeva M. Comparison of MALDI–TOF MS biotyper and 16S rDNA sequencing for the identification of Pseudomonas species isolated from fish. Microb. Pathog. [Internet]. 2019; 132:313-318. doi: https://doi.org/gk8frm DOI: https://doi.org/10.1016/j.micpath.2019.04.024

Jia B, Burnley H, Gardner IA, Saab ME, Doucet A, Hammell KL. Diagnosis of Renibacterium salmoninarum infection in harvested Atlantic salmon (Salmo salar L.) on the east coast of Canada: Clinical findings, sample collection methods and laboratory diagnostic tests. J. Fish Dis. [Internet]. 2023; 46(5):575-589. doi: https://doi.org/n9sq DOI: https://doi.org/10.1111/jfd.13770

Torres–Corral Y, Santos Y. Identification and typing of Vagococcus salmoninarum using genomic and proteomic techniques. J. Fish Dis. [Internet]. 2019; 42(4):597-612. doi: https://doi.org/gt7wjd DOI: https://doi.org/10.1111/jfd.12967

Liu C, Zhao X, Xie H, Zhang X, Li K, Ma C, Fu Q. Whole genome sequence and comparative genome analyses of multi–resistant Staphylococcus warneri GD01 isolated from a diseased pig in China. PloS One. [Internet]. 2020; 15(5):e0233363. doi: https://doi.org/n9sr DOI: https://doi.org/10.1371/journal.pone.0233363

Weinstein MP, Lewis JS. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. J. Clin. Microbiol. [Internet]. 2020; 58(3):e01864-19. doi: https://doi.org/gmx5zm DOI: https://doi.org/10.1128/JCM.01864-19

Marchesi J, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. Design and evaluation of useful bacterium–specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 1998; 64(2):795-799. doi: https://doi.org/grdzdj DOI: https://doi.org/10.1128/AEM.64.2.795-799.1998

Atanasoff A, Urku C. Isolation of Staphylococcus pasteuri in the cultured Russian sturgeon (Acipenser gueldenstaedtii) in Bulgaria. J. Anim. Plant Sci. [Internet]. 2022; 32(4):961-967. doi: https://doi.org/n9ss DOI: https://doi.org/10.36899/JAPS.2022.4.0498

Iwase T, Seki K, Shinji H, Mizunoe Y, Masuda S. Development of a real–time PCR assay for the detection and identification of Staphylococcus capitis, Staphylococcus haemolyticus and Staphylococcus warneri. J. Med. Microbiol. [Internet]. 2007; 56(10):1346-1349. doi: https://doi.org/cmckzs DOI: https://doi.org/10.1099/jmm.0.47235-0

Published
2025-03-11
How to Cite
1.
Yılmaz HE, Çağatay İfakat T, Diler Öznur, Nazıroğlu M, Özil Öznur, Kan Şeydanur. Identification of Staphylococcus warneri from rainbow trout (Oncorhynchus mykiss Walbaum, 1792) using proteomics–based MALDI–TOF MS. Rev. Cient. FCV-LUZ [Internet]. 2025Mar.11 [cited 2025Jun.20];35(1):9. Available from: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/43627
Section
Veterinary Medicine