Detection of exosomal MicroRNAs in milk of different animal species and investigation of their Temperature–Dependent changes

Keywords: Donkey milk, milk exosomes, miRNA, miRNA–15a, miRNA–34a

Abstract

This study aimed to investigate the presence of specific microRNAs (miRNAs; miRNA–15a, miRNA–34a, miRNA–223, and miRNA–29b) in the milk of cows, buffalo, sheep, goats, and donkeys which are associated with cancer, immune system, and osteoblast development in humans. Additionally, the effect of heat treatment on these miRNAs was investigated. Milks were heat treated at 63°C for 30 min (P1), 90°C for 10 min (P2), and 135°C for 1–3 seconds. The presence of miRNA–15a, miRNA–34a, miRNA–223, and miRNA–29b were detected in the milk of cows, buffalo, sheep, goats, and donkeys. It was observed that these miRNAs responded differently to heat.

Downloads

Download data is not yet available.

References

Massey LK. Dairy food consumption, blood pressure and stroke. J.Nutr. [Internet]. 2001; 131(7):1875–1878. doi: https://doi.org/pv4t DOI: https://doi.org/10.1093/jn/131.7.1875

Jaiswal S, Ramesh K, Kapusetti G, Ray AK, Ray B, Misra N. Mangiferin as chain transfer agent: effect on the molecular weight of poly (methyl methacrylate) and polystyrene. Poym. Bull. [Internet]. 2015; 72:1407–1416. doi: https://doi.org/f7jkcw DOI: https://doi.org/10.1007/s00289-015-1343-2

Fox PF. Milk Proteins: General and Historical Aspects. In: Fox PF, McSweeney PLH, editors. Advanced Dairy Chemistry – 1 Proteins. 3rd ed. [Internet]. New York: Springer Verlag Publish; 2003. p. 1–48. doi: https://doi.org/d35qbw DOI: https://doi.org/10.1007/978-1-4419-8602-3_1

Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am. J. Clin. Nutr. [Internet]. 2003; 77(1):257–265. doi: https://doi.org/gp6t35 DOI: https://doi.org/10.1093/ajcn/77.1.257

Galley JD, Besner GE.The therapeutic potential of breast milk–derived extracellular vesicles. Nutrients [Internet]. 2020; 12(3):745. doi: https://doi.org/gmkggd DOI: https://doi.org/10.3390/nu12030745

Sanwlani R, Fonseka P, Chitti SV, Mathivanan S. Milk–Derived extracellular vesicles in inter–organismal, cross–species communication and drug delivery. Proteomes [Internet]. 2020; 8(2):11. doi: https://doi.org/gmr4xc DOI: https://doi.org/10.3390/proteomes8020011

Shen J, Stass SA, Jiang F. MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett. [Internet]. 2013; 329(2):125–136. doi: https://doi.org/f4jztb DOI: https://doi.org/10.1016/j.canlet.2012.11.001

Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat. Res. Fundam. Mol. Mech. Mutagen. [Internet]. 2011; 717(1–2):85–90. doi: https://doi.org/dm7kvj DOI: https://doi.org/10.1016/j.mrfmmm.2011.03.004

Bertoli G, Cava C, Castiglioni I. MicroRNAs: New Biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics [Internet]. 2015; 5(10):1122–1143. doi: https://doi.org/f7xfdn DOI: https://doi.org/10.7150/thno.11543

Melnik BC, Schmitz G. MicroRNAs: Milk’s epigenetic regulators. Best. Pract. Res. Clin. Endocrinol. Metab. [Internet]. 2017; 31(4):427–442. doi: https://doi.org/gcttkq DOI: https://doi.org/10.1016/j.beem.2017.10.003

Alsaweed M, Hepworth AR, Lefèvre C, Hartmann PE, Geddes DT, Hassiotou F. Human milk microRNA and total RNA differ depending on milk fractionation. J. Cell. Biochem. [Internet]. 2015; 116(10):2397–2407. doi: https://doi.org/f7ntxq DOI: https://doi.org/10.1002/jcb.25207

Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci. Rep. [Internet]. 2016; 6:20680. doi: https://doi.org/f78gq4 DOI: https://doi.org/10.1038/srep20680

Do DN, Dudemaine PL, Li R, Ibeagha–Awemu EM. Co–expression network and pathway analyses reveal important modules of miRNAs regulating milk yield and component traits. Int. J. Mol. Sci. [Internet]. 2017; 18(7):1560. doi: https://doi.org/ghkrxq DOI: https://doi.org/10.3390/ijms18071560

Benmoussa A, Ly S, Shan ST, Laugier J, Boilard E, Gilbert C, Provost P. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. J. Extracell. Vesicles [Internet]. 2017; 6(1):1401897. doi: https://doi.org/pv4v DOI: https://doi.org/10.1080/20013078.2017.1401897

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome–mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. [Internet]. 2007: 9(6):654–659. doi: https://doi.org/d5df4s DOI: https://doi.org/10.1038/ncb1596

Hüttenhofer A, Mayer G. Circulating miRNAs as biomarkers of kidney disease. Clin. Kidney J. [Internet]. 2017; 10(1):27–29. doi: https://doi.org/pv4w

Thind A, Wilson C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J. Extracell Vesicles [Internet]. 2016; 5(1):31292. doi: https://doi.org/ghv97d DOI: https://doi.org/10.3402/jev.v5.31292

Iannaccone M, Cosenza G, Pauciullo A, Garofalo F, Proroga YT, Capuano F, Capparelli, R. Milk microRNA–146a as a potential biomarker in bovine tuberculosis. J. Dairy Res. [Internet]. 2018; 85(2):178–180. doi: https://doi.org/gdkdxv DOI: https://doi.org/10.1017/S0022029918000122

Taibi F, Metzinger–Le Meuth V, Massy ZA, Metzinger L. miR–223: an inflammatory oncomiR enters the cardiovascular field. Biochim. Biophys. Acta, Mol. Basis Dis. [Internet]. 2014; 1842(7):1001–1009. doi: https://doi.org/f55nd8 DOI: https://doi.org/10.1016/j.bbadis.2014.03.005

Rossi M, PitariMR, Amodio N, Di Martino MT, Conforti F, Leone E, Botta C, Paolino FM, Del Giudice T, Caraglia ELM, Ferrarini M, Giordano A, Tagliaferri P, Tassone, P. miR–29b negatively regulates human osteoclastic cell differentiation and function: Implications for the treatment of multiple myeloma–related bone disease. J. Cell. Physiol. [Internet]. 2013; 228(7):1506– 1515. doi: https://doi.org/f5b552 DOI: https://doi.org/10.1002/jcp.24306

Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M. Wojcik S, Aqeilan R, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu C, Kipps TJ, Negrini M, Croce CM. miR–15 and miR–16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. [Internet]. 2005; 102(39):13944–13949. doi: https://doi.org/crtvkp DOI: https://doi.org/10.1073/pnas.0506654102

He L, He X, Lim PL, Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe S, Cleary M , Hannon GJ. A microRNA component of the p53 tumor suppressor network. Nature [Internet]. 2007; 447:1130–1134. doi: https://doi.org/c2j33r DOI: https://doi.org/10.1038/nature05939

Dumpler J, Kulozik U. Heat stability of concentrated skim milk as a function of heating time and temperature on a laboratory scale – Improved methodology and kinetic relationship. Int. Dairy J. [Internet]. 2015; 49:111–117. doi: https://doi.org/pv4x DOI: https://doi.org/10.1016/j.idairyj.2015.05.005

Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N. Isolation of bovine milk–derived microvesicles carring mRNAs and microRNAs. Biochem. Biophys. Res. Commun. [Internet]. 2010; 396(2):528–533. doi: https://doi.org/d5pq4f DOI: https://doi.org/10.1016/j.bbrc.2010.04.135

Lai YC, Fujikawa T, Ando T, Kitahara G, Koiwa M, Kubota C, Miura N. Rapid communication: MiR–92a as a house keeping gene for analysis of bovine mastitis–related microRNA in milk. J. Anim. Sci. [Internet]. 2017; 95(6):2732–2735. doi: https://doi.org/gbpjxs DOI: https://doi.org/10.2527/jas.2017.1384

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real–time quantitative PCR and the 2–∆∆C Method. Methods [Internet]. 2001; 25(4):402–408. doi: https://doi.org/c689hx DOI: https://doi.org/10.1006/meth.2001.1262

Benmoussa A, Provost P. Milk MicroRNAs in health and disease. Compr. Rev. Food Sci. Food Saf. [Internet]. 2019; 18(3):703–722. doi: https://doi.org/gmr4w2 DOI: https://doi.org/10.1111/1541-4337.12424

Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z,Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross– kingdom regulation by microRNA. Cell. Res. [Internet]. 2012; 22(1):107–126. doi: https://doi.org/cwd DOI: https://doi.org/10.1038/cr.2011.158

Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat. Biotechnol. [Internet]. 2013; 31(11):965–967. doi: https://doi.org/gjvprm DOI: https://doi.org/10.1038/nbt.2737

Wolf T, Baier SR, Zempleni J. The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco–2 cells and rat small intestinal IEC–6 cells 1, 2, 3. J. Nutr. [Internet]. 2015; 145(10):2201–2206. doi: https://doi.org/f7tjzc DOI: https://doi.org/10.3945/jn.115.218586

Zempleni J, Baier SR, Howard KM, Cui J. Gene regulation by dietary microRNAs. Can. J. Physiol. Pharmacol. [Internet]. 2015; 93(12):1097–1102. doi: https://doi.org/f72dkk DOI: https://doi.org/10.1139/cjpp-2014-0392

Zempleni J, Aguilar–Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications in infants. J. Nutr. [Internet]. 2017; 147(1):3–10. doi: https://doi.org/ggpq8f DOI: https://doi.org/10.3945/jn.116.238949

Howard KM, Kusuma RJ, Baier SR, Friemel T, Markham L, Vanamala J. Zempleni J. Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. J. Agric. Food Chem. [Internet]. 2015; 63(2):588–592. doi: https://doi.org/f6zvjq DOI: https://doi.org/10.1021/jf505526w

Kirchner B, Pfaffl MW, Dumpler J, von Mutius E, Ege MJ. microRNA in native and processed cow’s milk and its implication for the farm milk effect on asthma. J. Allergy Clin. Immunol. [Internet]. 2016; 137(6):1893–1895. doi: https://doi.org/gmr4xx DOI: https://doi.org/10.1016/j.jaci.2015.10.028

Golan–Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D, Leshkowitz D, Reif S. Characterization and biological function of milk–derived miRNAs. Mol. Nutr. Food Res. [Internet]. 2017; 61(10):1700009 doi: https://doi.org/gmr4tv DOI: https://doi.org/10.1002/mnfr.201700009

Kleinjan M, van Herwijnen MJ, Libregts SF, van Neerven RJ, Feitsma AL, Wauben MH. Regular Industrial Processing of bovine milk impacts the integrity and molecular composition of extracellular vesicles. J. Nutr. [Internet]. 2021; 151(6):1416– 1425. doi: https://doi.org/gmr4wp DOI: https://doi.org/10.1093/jn/nxab031

Zhang Y, Xu Q, Hou J, Huang G, Zhao S, Zheng N, Wang J. Loss of bioactive microRNAs in cow’s milk by ultra–high– temperature treatment but not by pasteurization treatment. J. Sci. Food Agric. [Internet]. 2022; 102(7):2676–2685. doi: https://doi.org/pv43 DOI: https://doi.org/10.1002/jsfa.11607

Published
2025-07-19
How to Cite
1.
Celık A, Vural A, Yıldırım IH. Detection of exosomal MicroRNAs in milk of different animal species and investigation of their Temperature–Dependent changes. Rev. Cient. FCV-LUZ [Internet]. 2025Jul.19 [cited 2025Jul.27];35(3):7. Available from: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/44126
Section
Veterinary Medicine