Predicción del tiempo de almacenamiento de carne congelada usando modelado de redes neuronales artificiales con valores de color

  • Saliha Lakehal University of Batna1, Institute of Veterinary Science and Agricultural Sciences, Department of Veterinary Sciences. Batna, Algeria
  • Brahim Lakehal University of Batna2, Institute of Hygiene and Industrial Security. Batna, Algeria
Palabras clave: Carne de res, modelado ANN, parámetros de color, tiempo de almacenamiento

Resumen

Entre los diversos métodos disponibles para determinar el tiempo de almacenamiento de la carne congelada, incluidos los análisis basados en propiedades físicas y químicas, el análisis sensorial, en particular los cambios de color, es un aspecto importante de la aceptabilidad de la carne por parte de los consumidores. En este estudio, se empleó una red neuronal artificial (ANN) para predecir el tiempo de almacenamiento de la carne con base en el espacio de color CIELAB, representado por los valores Lab* (L*), (a*) y (b*) medidos por un sistema de visión artificial a intervalos de dos meses durante un período de hasta un año.La topología ANN se optimizó en función de los cambios en los coeficientes de correlación (R2) y los errores cuadráticos medios (MSE), lo que resultó en una red de 60 neuronas en una capa oculta (R2 = 0,9762 y MSE = 0,0047). El rendimiento del modelo ANN se evaluó utilizando criterios como desviación absoluta media (MAD), MSE, error cuadrático medio (RMSE), R2 y error absoluto medio (MAE), que resultaron ser 0,0344; 0,0047; 0,0687; 0,9762 y 0,0078, respectivamente. En general, estos resultados sugieren qu’el uso de un sistema basado en vision por computadora combinado con inteligencia artificial podría ser una técnica confiable y no destructiva para evaluar la calidad de la carne durante su tiempo de almacenamiento.

Descargas

La descarga de datos todavía no está disponible.

Citas

Zhang Y, Ertbjerg P. On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chem. 2019;299:125104. doi: https://doi.org/gj9w9h

Beltrán JA, Bellés M. Effect of freezing on the quality of meat. Encycl. Food Secur. Sustain. 2018; 493–7. doi: https://doi.org/kgdb.

Korifi R, Le Dréau Y, Antinelli JF, Valls R, Dupuy N. CIEL*a*b* color space predictive models for colorimetry devices – Analysis of perfume quality. Talanta. 2013; 104:58–66. doi: https://doi.org/f4zswt

Hansen E, Juncher D, Henckel P, Karlsson A, Bertelsen G, Skibsted LH. Oxidative stability of chilled pork chops following long term freeze storage. Meat Sci. 2004; 68:479–84. doi: https://doi.org/fckgtk

Zhu N, Wang K, Zhang SL, Zhao B, Yang JN, Wang SW. Application of artificial neural networks to predict multiple quality of dry–cured ham based on protein degradation. Food Chem. 2021; 344:128586. doi: https://doi.org/kgdd

Kaczmarek A, Muzolf–Panek M. Article predictive modeling of changes in TBARS in the intramuscular lipid fraction of raw ground beef enriched with plant extracts. Antioxidants. 2021;10(5):730. doi: https://doi.org/kgdf

Xu Z, Liu X, Wang H, Hong H, Luo Y. Comparison between the Arrhenius model and the radial basis function neural network (RBFNN) model for predicting quality changes of frozen shrimp (Solenocera melantho). Int. J. Food Prop. 2017; 20:2711–23. doi: https://doi.org/kgdg

Kaczmarek A, Muzolf–Panek M. Prediction of thiol group changes in minced raw and cooked chicken meat with plant extracts–kinetic and neural network approaches. Anim. 2021; 11(6):1647. doi: https://doi.org/kgdh

Taheri–Garavand A, Fatahi S, Shahbazi F, de la Guardia M. A nondestructive intelligent approach to real–time evaluation of chicken meat freshness based on computer vision technique. J. Food Process Eng. 2019; 42:1–10. doi: https://doi.org/kgdj

Mohammadi Lalabadi H, Sadeghi M, Mireei SA. Fish freshness categorization from eyes and gills color features using multi–class artificial neural network and support vector machines. Aquac. Eng. 2020; 90:102076. doi: https://doi.org/kgdk

Tomasevic I, Tomovic V, Ikonic P, Lorenzo–Rodriguez JM, Barba FJ, Djekic I, Nastasijević I, Stajić S, Živković D. Evaluation of poultry meat colour using computer vision system and colourimeter: Is there a difference? Br. Food. J. 2019; 121:1078–87. doi: https://doi.org/kgdm

Lakehal B, Dibi Z, Lakhdar N, Dendouga A. Electrical equivalent model of intermediate band solar cell using PSpice. Sadhana. 2015; 40:1473–9. doi: https://doi.org/kgdn

Zhang R, Yoo MJY, Farouk MM, Delgado–Pando G. Quality and Acceptability of Fresh and Long–Term Frozen In–Bag Dry–Aged Lean Bull Beef. J. Food Qual. 2019; 2019:e1975264. doi: https://doi.org/kgdp

Muela E, Monge P, Sañudo C, Campo MM, Beltrán JA. Meat quality of lamb frozen stored up to 21 months: Instrumental analyses on thawed meat during display. Meat Sci. 2015; 102:35–40. doi: https://doi.org/f64fd7

Muela E, Sañudo C, Campo MM, Medel I, Beltrán JA. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display. Meat Sci. 2010; 84:662–9. doi: https://doi.org/bpzjvz

Mancini RA, Hunt MC. Current research in meat color. Meat Sci. 2005; 71:100–21. doi: https://doi.org/dks36s

Leygonie C, Britz TJ, Hoffman LC. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012; 91:93–8. doi: https://doi.org/fzh375

Farouk MM, Swan JE. Effect of Rigor temperature and frozen storage on functional properties of hot–boned manufacturing beef. Meat Sci. 1998; 49:233–47. doi: https://doi.org/bktm5g

Fernandez X, Monin G, Culioli J, Legrand I, Quilichini Y. Effect of Duration of Feed Withdrawal and Transportation Time on Muscle Characteristics and Quality in Friesian–Holstein Calves. J. Anim. Sci. 1996; 74:1576–83. doi: https://doi.org/kgdq

Zhu LG, Brewer MS. Discoloration of fresh pork as related to muscle and display conditions. J. Food Sci. 1998; 63:763–7. doi: https://doi.org/bw7g8s

Li X, Zhang Y, Li Z, Li M, Liu Y, Zhang D. The effect of temperature in the range of − 0.8 to 4°C on lamb meat color stability. Meat Sci. 2017; 134:28–33. doi: https://doi.org/kgdr

Medić H, Djurkin Kušec I, Pleadin J, Kozačinski L, Njari B, Hengl B, Kušec G. The impact of frozen storage duration on physical, chemical and microbiological properties of pork. Meat Sci. 2018; 140:119–27. doi: https://doi.org/gdhwf9

Alonso V, Muela E, Tenas J, Calanche JB, Roncalés P, Beltrán JA. Changes in physicochemical properties and fatty acid composition of pork following long–term frozen storage. Eur. Food Res. Technol. 2016; 242:2119–27. doi: https://doi.org/kgds

Daszkiewicz T, Purwin C, Kubiak D, Fijałkowska M, Kozłowska E, Antoszkiewicz Z. Changes in the quality of meat (Longissimus thoracis et lumborum) from Kamieniec lambs during long–term freezer storage. Anim. Sci. J. 2018; 89:1323–30. doi: https://doi.org/kgdt

Vieira C, Diaz MT, Martínez B, García–Cachán MD. Effect of frozen storage conditions (temperature and length of storage) on microbiological and sensory quality of rustic crossbred beef at different states of ageing. Meat Sci. 2009; 83:398–404. doi: https://doi.org/dthjs3

Coombs CEO, Holman BWB, Collins D, Friend MA, Hopkins DL. Effects of chilled–then–frozen storage (up to 52 weeks) on lamb M. longissimus lumborum quality and safety parameters. Meat Sci. 2017; 134:86–97. doi: https://doi.org/kgdw

Estévez M. Protein carbonyls in meat systems: A review. Meat Sci. 2011; 89:259–79. doi: https://doi.org/dxcw6j

Zhang K, Zhang B, Chen B, Jing L, Zhu Z, Kazemi K. Modeling and optimization of Newfoundland shrimp waste hydrolysis for microbial growth using response surface methodology and artificial neural networks. Mar. Pollut. Bull. 2016; 109:245–52. doi: https://doi.org/gfkr59

Publicado
2023-06-25
Cómo citar
1.
Lakehal S, Lakehal B. Predicción del tiempo de almacenamiento de carne congelada usando modelado de redes neuronales artificiales con valores de color. Rev. Cient. FCV-LUZ [Internet]. 25 de junio de 2023 [citado 29 de diciembre de 2024];33(2):1-. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/40442
Sección
Ciencia y Tecnologia de Alimentos