Efecto de la Administración Intramamaria de Ácido Hipocloroso en la Mastitis Subclínica en Vacas Lecheras
Resumen
La mastitis subclínica es un problema significativo en la producción lechera debido a su impacto en la producción y calidad de la leche, lo que lleva a pérdidas económicas a pesar de la ausencia de síntomas visibles. El presente estudio tuvo como objetivo investigar el uso potencial del tratamiento intramamario con ácido hipocloroso (HOCl) como un sustituto viable a los antibióticos para el tratamiento de la mastitis subclínica (MSC) en vacas lecheras. Un total de 232 vacas lecheras Holstein–Friesian con 928 cuartos mamarios fueron sometidas a la prueba de mastitis de California (CMT) para identificar la MSC. Los resultados indicaron que 141 vacas tenían MSC en al menos un cuarto de la ubre, con una tasa del 60.78% en el rebaño. Entre estas vacas, 259 cuartos mamarios mostraron diversos grados de CMT positivo. Antes del tratamiento, se determinaron los conteos de células somáticas (SCC) y se realizaron cultivos bacterianos en 74 cuartos mamarios CMT positivos seleccionados al azar. El HOCl se administró por vía intramamaria a estos cuartos durante 5 días inmediatamente después del ordeño. El CMT, el SCC y el cultivo bacteriano se repitieron en el tercer y quinto día del tratamiento. Se observó un aumento en el SCC en el tercer y quinto día del tratamiento en comparación con antes del tratamiento (P<0.001). El crecimiento bacteriano se redujo del 64.86% antes del tratamiento al 49,95% en el tercer día y al 22,97% en el quinto día del tratamiento. Staphylococcus aureus fue la bacteria más prevalente antes del tratamiento. En el tercer día del tratamiento, la tasa de crecimiento bacteriano, particularmente en Candida spp., disminuyó en comparación con antes del tratamiento. Sin embargo, en el quinto día del tratamiento, S. aureus y la combinación de S. aureus con Candida spp. continuaron mostrando altas tasas de crecimiento. En conclusión, este estudio subraya que el HOCl es una alternativa potencial a los antibióticos para tratar la MSC en vacas lecheras. Se recomienda realizar más investigaciones que abarquen tanto la mastitis clínica como la subclínica, junto con estudios que apunten a prolongar la presencia de HOCl en la ubre, determinar su dosis ideal y aumentar su impacto en más células.
Descargas
Citas
Gurbulak K, Canooglu E, Abay M, Atabay O, Bekyurek T. İneklerde Subklinik Mastitisin Farklı Yöntemlerle Saptanması [Determination of subclinical mastitis in dairy cows by different methods]. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2009; 15(5):765–70. Turkish. doi: https://doi.org/g3v5qt
Sinha MK, Thombare NN, Mondal B. Subclinical mastitis in dairy animals: Incidence, economics, and predisposing factors. Sci. World J. [Internet]. 2014; 523984. doi: https://doi.org/gb528t
Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R. Mastitis detection: current trends and future perspectives. Trends Biotechnol. [Internet]. 2009; 27(8):486–493. doi: https://doi.org/c42vsb
Bhakat C, Mohammad A, Mandal DK, Mandal A, Rai S, Chatterjee A, Ghosh MK, Dutta TK. Readily usable strategies to control mastitis for production augmentation in dairy cattle: A review. Vet. World [Internet]. 2020; 13(11):2364–2370. doi: https://doi.org/g3v5q5
Lakshmi R, Jayavardhanan KK. Screening of milk samples for sub–clinical and clinical mastitis by using CMT and SCC. J. Med. Sci. Clin. Res. [Internet]. 2016; 4(6):10853–10855. doi: https://doi.org/g3v5rb
Ghimpețeanu OM, Pogurschi EN, Popa DC, Dragomir N, Drăgotoiu T, Mihai OD, Petcu CD. Antibiotic use in livestock and residues in food—A public health threat: A review. Foods [Internet]. 2022; 11(10):1430. doi: https://doi.org/g3v5rg
Pyörälä S. New strategies to prevent mastitis. Reprod. Domest. Anim. [Internet]. 2002; 37(4):211–216. doi: https://doi.org/dgh6hh
Martins L, Barcelos MM, Cue RI, Anderson KL, dos Santos MV, Gonçalves JL. Chronic subclinical mastitis reduces milk and components yield at the cow level. J. Dairy Res. [Internet]. 2020; 87(3):298–305. doi: https://doi.org/g3v5rj
Nielen M, Schukken YH, Van de Broek J, Brand A, Deluyker HA, Maatje K. Relations between on–line electrical conductivity and daily milk production on a low somatic cell count farm. J. Dairy Sci. [Internet]. 1993; 76:2589–2596. doi: https://doi.org/dhmbg3
Dhakal IP. Normal somatic cell count and subclinical mastitis in Murrah buffaloes. J. Vet. Med. Ser. B. [Internet]. 2006; 53(2):81–86. doi: https://doi.org/cz4nxf
Kaşikçi G, Çetin Ö, Bingöl EB, Gündüz MC. Relations between electrical conductivity, somatic cell count, California mastitis test and some quality parameters in the diagnosis of subclinical mastitis in dairy cows. Turkish J. Vet. Anim. Sci. [Internet]. 2012; 36(1):49–55. doi: https://doi.org/g3v5rs
Rainard P, Foucras G, Boichard D, Rupp R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J. Dairy Sci. [Internet]. 2018; 101(8):6706–6714. doi: https://doi.org/gdzf3k
Harmon RJ. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. [Internet]. 1994; 77:2103–2112. doi: https://doi.org/bmzbch
Enright E, Bland AP, Needs EC, Kelly AL. Proteolysis and physicochemical changes in milk on storage as affected by UHT treatment, plasmin activity and KIO3 addition. Int. Dairy J. [Internet]. 1999; 9(9):581–591. doi: https://doi.org/c9mgdq
Kalit S, Lukac Havranek J, Kaps M, Perko B, Cubric Curik V. Proteolysis and the optimal ripening time of Tounj cheese. Int. Dairy J. [Internet]. 2005; 15(6–9):619–624. doi: https://doi.org/b97wrj
Fernandes AM, Oliveira CAF, Lima CG. Effects of somatic cell counts in milk on physical and chemical characteristics of yoghurt. Int. Dairy J. [Internet]. 2007; 17(2):111–115. doi: https://doi.org/ckdj6f
Revello Chion A, Tabacco E, Giaccone D, Peiretti PG, Battelli G, Borreani G. Variation of fatty acid and terpene profiles in mountain milk and “Toma piemontese” cheese as affected by diet composition in different seasons. Food Chem. [Internet]. 2010; 121(2):393–399. doi: https://doi.org/bm98rf
Sanford CJ, Keefe GP, Sanchez J, Dingwell RT, Barkema HW, Leslie KE, Dohoo IR. Test characteristics from latent–class models of the California Mastitis Test. Prev. Vet. Med. [Internet]. 2006; 77(1–2):96–108. doi: https://doi.org/df6rms
Tran AQ, Topilow N, Rong A, Persad PJ, Lee MC, Lee JH, Anagnostopoulos AG, Lee WW. Comparison of skin antiseptic agents and the role of 0.01% hypochlorous acid. Aesthetic Surg. J. [Internet]. 2021; 41(10):1170–1175. doi: https://doi.org/g3v5sc
Lipsky BA, Aragón‐Sánchez J, Diggle M, Embil J, Kono S, Lavery L, Senneville É, Urbančič–Rovan V, Van Asten S, Peters EJG, on behalf of the International Working Group on the Diabetic Foot (IWGDF). IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes. Metab. Res. Rev. [Internet]. 2016; 32:45–74. doi: https://doi.org/f78b4g
Sakarya S, Gunay N, Karakulak M, Ozturk B, Ertugrul B. Hypochlorous Acid: an ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds [Internet]. 2014 [cited 20 May 2024]; 26(12):342–350. PMID: 25785777. Available in: https://goo.su/qNtC
Fukuyama T, Martel BC, Linder KE, Ehling S, Ganchingco JR, Bäumer W. Hypochlorous acid is antipruritic and anti–inflammatory in a mouse model of atopic dermatitis. Clin. Exp. Allergy [Internet]. 2018; 48(1):78–88. doi: https://doi.org/gt5j7q
Sam CH, Lu HK. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J. Dent. Sci. [Internet]. 2009; 4(2):45–54. doi: https://doi.org/bbnw6d
Yildiz İ, Tileklioğlu E, Yilmaz Ö, Ertabaklar H, Sakarya S. Stabilized hypochlorous acid, a topical therapeutic strategy for Trichomonas vaginalis infection: An in vitro study. Parasitol. United J. [Internet]. 2020;13(1):60–65. doi: https://doi.org/g3v5sn
Stroman DW, Mintun K, Epstein AB, Brimer CM, Patel CR, Branch JD, Najafi–Tagol K. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin. Ophthalmol. [Internet]. 2017; 11:707–714. doi: https://doi.org/gg3wc8
Chen CJ, Chen CC, Ding SJ. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int. J. Mol. Sci. [Internet]. 2016; 17(7):1161. doi: https://doi.org/f82j8p
Kubota A, Goda T, Tsuru T, Yonekura T, Yagi M, Kawahara H, Yoneda A, Tazuke Y, Tani G, Ishii T, Umeda S, Hirano K. Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis. Surg. Today [Internet]. 2015; 45:876–879. doi: https://doi.org/f7gd84
Joachim D. Wound cleansing: benefits of hypochlorous acid. J. Wound Care [Internet]. 2020; 29(10 Suppl. 2):s4–s8. doi: https://doi.org/g3v5sw
Sakarya S, Gunay N, Karakulak M, Ozturk B, Ertugrul B. Hypochlorous acid: An ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds [Internet]. 2014 [cited 20 May 2024]; 26(12):342–350. PMID: 25785777. Available in: https://goo.su/GTGD
Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. [Internet]. 2020; 104(3):246–251. doi: https://doi.org/ggm86h
Park GW, Boston DM, Kase JA, Sampson MN, Sobsey MD. Evaluation of liquid – and fog–based application of sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl. Environ. Microbiol. [Internet]. 2007; 73(14):4463–4468. doi: https://doi.org/fr278k
Roy JP, Du Tremblay D, DesCôteaux L, Messier S, Scholl D, Bouchard É. Evaluation of the California Mastitis Test as a precalving treatment selection tool for Holstein heifers. Vet. Microbiol. [Internet]. 2009; 134(1–2):136–142. doi: https://doi.org/d7shpq
McFadden M. California mastitis test and milk quality. Michigan Dairy Rev. [Internet]. 2011 [Cited 12 Apr. 2024]; 16(2):1–3. Available in: https://goo.su/Ul3kuEG
Çeti̇n H, Erdoğan G, Yilmaz Ö, Uçar EH, Peker C, Sakarya S. Investigation of intramammary hypochlorous administration in cattles with subclinical mastitis. In: Mediterranean Veterinary Congress coupled with 7th REEV–Med General Assembly; 2018 Dec. 13–14; Kirikkale. Turkey; 2018. p. 13–14.
Procop GW, Church DL, Hall GS, Janda WM, Koneman EW, Schereckenberger PC, Woods GL. Konemam’s color atlas and textbook of diagnostic microbiology. 7th ed. Burlington (MA, USA): Jones Barlett Learning; 2017. 1864 p.
Paramasivam R, Gopal DR, Dhandapani R, Subbarayalu R, Elangovan MP, Prabhu B, Veerappan V, Nandheeswaran A, Paramasivam S, Muthupandian S. Is AMR in dairy products a threat to human health? An updated review on the origin, prevention, treatment, and economic impacts of subclinical mastitis. Infect. Drug Resist. [Internet]. 2023; 16:155–178. doi: https://doi.org/g3v5s7
de Graaf T, Dwinger RH. Estimation of milk production losses due to sub–clinical mastitis in dairy cattle in Costa Rica. Prev. Vet. Med. [Internet]. 1996; 26(3–4):215–222. doi: https://doi.org/bqd3vr
Karimuribo ED, Fitzpatrick JL, Bell CE, Swai ES, Kambarage DM, Ogden NH, Bryant MJ, French NP. Clinical and subclinical mastitis in smallholder dairy farms in Tanzania: Risk, intervention and knowledge transfer. Prev. Vet. Med. [Internet]. 2006; 74(1):84–98. doi: https://doi.org/ddxj22
Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. J. Anim. Sci. [Internet]. 2008; 86(Suppl. 13):57–65. doi: https://doi.org/btcmvz
Krishnamoorthy P, Goudar AL, Suresh KP, Roy P. Global and countrywide prevalence of subclinical and clinical mastitis in dairy cattle and buffaloes by systematic review and meta–analysis. Res. Vet. Sci. [Internet]. 2021; 136:561–586. doi: https://doi.org/g3v5tg
Jones TO. A review of teat factors in bovine E. coli mastitis. Vet. Rec. [Internet]. 1986; 118(18):507–509. doi: https://doi.org/fs47mx
Gonzalez RN, Jasper DE, Kronlund NC, Farver TB, Cullor JS, Bushnell RB, Dellinger JD. Clinical mastitis in two California dairy herds participating in contagious mastitis control programs. J. Dairy Sci. [Internet]. 1990; 73(3):648–660. doi: https://doi.org/bjcjtd
Miltenburg JD, de Lange D, Crauwels APP, Bongers JH, Tielen MJM, Schukken YH, Elbers AR. Incidence of clinical mastitis in a random sample of dairy herds in the southern Netherlands. Vet. Rec. [Internet]. 1996; 139(9):204–207. doi: https://doi.org/d4vqvv
Craven N. Efficacy and financial value of antibiotic treatment of bovine clinical mastitis during lactation – A review. Br. Vet. J. [Internet]. 1987; 143(5):410–422. doi: https://doi.org/g3v5tr
Çelik Ö, Sur E, Çetin H. Aydın ili Söke ilçesinde sütçü ineklerde subklinik mastitis prevalansının ve mastitise neden olan aerobik bakterilerin belirlenmesi [Determination of subclinical mastitis prevalence and aerobic bacteries causing mastitis in dairy cows in Soke district of Aydin]. Harran Üniv. Vet. Fak. Derg. [Internet]. 2021; 10(2):100–106. Turkish. doi: https://doi.org/g3v5tx
Özdemir S, Kaymaz M. Küçük aile işletmelerinde yetiştirilen ineklerde subklinik mastitis insidensi ve tanı yöntemlerinin karşılaştırılması [Comparison of diagnostic methods and incidence of subclinical mastitis on local breeds]. Atatürk Üniv Vet Bil Derg. [Internet]. 2013 [cited 12 Mar. 2024]; 8(1):71–79. Turkish. Available in: https://goo.su/3SKVAc
Özenç E. Afyonkarahisar’da aile tipi işletmelerde California Mastitis Test ile saptanan subklinik mastitis olguları ile ilişkili risk faktörlerinin belirlenmesi [Determination of risk factors associated with subclinical mastitis as detected by California Mastitis Test in smallholder dairy farms in Afyonkarahisar]. Kocatepe Vet. J. [Internet]. 2019; 12(3):277–283. Turkish. doi: https://doi.org/g3v5t3
Lago A, Godden SM, Bey R, Ruegg PL, Leslie K. The selective treatment of clinical mastitis based on on–farm culture results: II. Effects on lactation performance, including clinical mastitis recurrence, somatic cell count, milk production, and cow survival. J. Dairy Sci. [Internet]. 2011; 94(4):4457–4467. doi: https://doi.org/c63gmb
Birhanu M, Leta S, Mamo G, Tesfaye S. Prevalence of bovine subclinical mastitis and isolation of its major causes in Bishoftu Town, Ethiopia. BMC Res. Notes [Internet]. 2017; 10(767). doi: https://doi.org/gmq26g
Ijaz M, Manzoor A, Mohy–ud–Din MT, Hassan F, Mohy–ud–Din Z, Ans M, Saleem MI, Khan HH, Khanum F. An economical non–antibiotic alternative to antibiotic therapy for subclinical mastitis in cows. Pak. Vet. J. [Internet]. 2021; 41(4):475–480. doi: https://doi.org/g3v5t4
Wellnitz O, Wall SK, Saudenova M, Bruckmaier RM. Effect of intramammary administration of prednisolone on the blood–milk barrier during the immune response of the mammary gland to lipopolysaccharide. Am. J. Vet. Res. [Internet]. 2014; 75(6):595–601. doi: https://doi.org/f6xjvr
Ashraf A, Imran M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev. [Internet]. 2020; 21(1):36–49. doi: https://doi.org/gmxmbm
Çokal Y, Konuş R. Subklinik mastitisli ineklerin sütlerinden aerobik bakterilerin izolasyonu [Isolation of Aerobic Bacteria from Cow Milks with Subclinical Mastitis]. Balıkesir Sağlık Bil. Derg. [Internet]. 2012 [cited 15 Apr. 2024]; 1(2):65–69. Turkish. Available in: https://goo.su/WLrhCb2
Gonçalves JL, Tomazi T, Barreiro JR, Beuron DC, Arcari MA, Lee SHI, Martins CM, Araújo Junior JP, dos Santos MV. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. [Internet]. 2016; 209:87–92. doi: https://doi.org/f8dtjv
Türkyilmaz S, Kaynarca S. The slime production by yeasts isolated from subclinical mastitic cows. Acta Vet. Brno. [Internet]. 2010; 79(4):581–586. doi: https://doi.org/cw2wt2
Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. [Internet]. 2014; 10:95–105. doi: https://doi.org/gbfp2h
Derechos de autor 2024 Eyyup Hakan Ucar, Cevdet Peker
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.