Perfil de ácidos grasos en la grasa dorsal y en el músculo Longisimus dorsi de lechones Pelones post-destetados alimentados con hojas de arbóreas

Resumen

En la presente investigación se comparó la inclusión de harinas de las arbóreas Cnidoscolus aconitifolius (Chaya), Morus alba (Morera) y Moringa oleifera (Moringa) en la dieta convencional Maíz–Soya, para evaluar el perfil lipídico en el Longisimus dorsi (LD) y en la grasa dorsal (GD) de cerdos Pelones post destetados. Se utilizó una muestra de 28 animales, de 24 días de nacidos en etapa post destete, los cuales fueron divididos en cuatro grupos experimentales, agrupados por sexo y peso y sometidos a un período de siete días de adaptación. Posteriormente fueron alimentados ad libitum durante 28 días y sacrificados a los 59 días. Para el análisis estadístico de las variables asociadas al perfil de ácidos grasos (SFA, MUFA, PUFA) se empleó un modelo estadístico de diseño de bloques al azar, con el objetivo de determinar si existían diferencias estadísticamente significativas (P˂0,05) entre las variables asociadas al perfil de ácidos grasos y las dietas. Se demostró que la variable SFA en LD y en GD fue mayor en los lechones alimentados con Morera, los MUFAs en LD y GD resultaron ser más altos en los animales del grupo Control y los valores de los PUFAs en LD y GD incrementaron en los lechones suplementados con Moringa y Chaya, permitiendo concluir que Morera incrementa los valores de SFA en LD y GD de cerdos Pelones; por otro lado, la Chaya y la Moringa aumentan el contenido de los PUFAs en LD y GD de estos animales.

Descargas

La descarga de datos todavía no está disponible.

Citas

Cardenia V, Rodriguez-Estrada MT, Cumella F, Sardi L, Della Casa G, Lercker G. Oxidative stability of pork meat lipids as related to high-oleic sunflower oil and vitamin E diet supplementation and storage conditions. Meat Sci. [Internet]. 2011; 88(2):271–279. doi: https://doi.org/dr4439 DOI: https://doi.org/10.1016/j.meatsci.2010.12.034

Benítez R, Fernández A, Isabel B, Núñez Y, De Mercado E, Gómez-Izquierdo E, García-Casco J, López-Bote C, Óvilo C. Modulatory effects of breed, feeding status, and diet on adipogenic, lipogenic, and lipolytic gene expression in growing Iberian and Duroc pigs. Int. J. Mol. Sci [Internet]. 2018; 19(1):22. doi: https://doi.org/gtd7z2 DOI: https://doi.org/10.3390/ijms19010022

Serra Bisbal JJ, Melero Lloret J, Martínez Lozano G, Fagoaga García C. Especies vegetales como antioxidantes de alimentos. Nereis. Rev. Iberoam. Interdiscip. Métodos Model. Simul.. [Internet]. 2020 [cited 12 april 2025]; 12:71–90. Available in: https://goo.su/qAYuxzl DOI: https://doi.org/10.46583/nereis_2020.12.577

Martínez-Aispuro JA, Figueroa-Velasco JL, Soni-Guillermo E, Sánchez-Torres-Esqueda MT, Cordero-Mora JL. Modificación lipídica de la carne de cerdo y su impacto en la salud humana. Rev. Agro-Divulg. [Internet]. 2022 [cited 2 February 2025]; 2(5):45-47. Available in: https://goo.su/Fqne

Islas Enríquez RP, Márquez Reyes JM, Amaya Guera CA, Gallardo Rivera CT, Galindo Rodríguez SA, Treviño Garza MZ. Avances recientes en el desarrollo de recubrimientos comestibles aplicados en productos cárnicos.Invest. desarro. cienc. tecnol. aliment. [Internet]. 2024; 9(1):32-42. doi: https://doi.org/pgsd DOI: https://doi.org/10.29105/idcyta.v9i1.129

Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hugnes, SI, Whittington FM. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. [Internet]. 2008; 78(4):343-358. doi: https://doi.org/fjdz3f DOI: https://doi.org/10.1016/j.meatsci.2007.07.019

Quiles A, Hevia ML. Papel de los ácidos grasos omega 3 en la alimentación del cerdo. Cría y Salud. [Internet]. 2011 [cited 12 February 2025]; 36:56-62. Available in: https://goo.su/eVfZTDc

Jiménez-Arellanes MA, García-Martínez I, Rojas-Tomé S. Potencial biológico de especies medicinales del género Cnidoscolus (Euphorbiacea). Rev. Mex. Cienc. Farm. [Internet]. 2014 [cited 6 February 2025]; 45(4):1-6. Available in: https://goo.su/qwq4S

Villegas DE, Roa MR. Digestibilidad in vivo de morera (Morus alba), con diferentes niveles de concentrado en curies (Cavia porcellus). Rev. Sist. Prod. Agroecol. [Internet]. 2020; 11(2):52-70. doi: https://doi.org/pv9j DOI: https://doi.org/10.22579/22484817.470

Estay-Moyano CA, Mazón-Suástegui JM, Zapata Vivenes E, Simal-Ganadara J, Lodeiros Seijo C. Análisis del perfil lipídico y aminoacídico de hojas deshidratadas de Moringa oleifera (L.) y su potencial como suplemento dietético en acuicultura de moluscos. La Técnica Rev. Agrocienc. [Internet]. 2021; 25(1-20):30-39. doi: https://doi.org/pv9k DOI: https://doi.org/10.33936/la_tecnica.v0i0.3061

Fuentelsaz Gallego C. Cálculo del tamaño de la muestra para estimar una media. Rev. Matronas Prof. [Internet]. 2004 [cited 16 February 2025]; 5(18):5-13. Available in: https://goo.su/IW0Yh

Norma Oficial Mexicana NOM-062-ZOO-1999 Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. D. Oficial Fed. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Gobierno de México. [Internet]. 1999 [cited 19 nov. 2024]. p 1-59. Available in: https://goo.su/GPpw

Norma Oficial Mexicana NOM-051-ZOO-1995 Trato humanitario en la movilización de animales. D. Oficial Fed. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Gobierno de México. [Internet]. 1995 [cited 16 nov. 2024]. p 1-23. Available in: https://goo.su/iegjAIT

Norma Oficial Mexicana NOM-033-SAG/ZOO-2014 Métodos para dar Muerte a los Animales Domésticos y Silvestres. D. Oficial Fed. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Gobierno de México. [Internet]. 2014 [cited 11 jul. 2024]. p 1-48. Available in: https://goo.su/0UhrUz

Santiago H, Teixeira LF, Izabel M, Lopes J, Kazue N, Guilherme F, Saraiva A, Teixeira ML, Borges P, de Oliveira RF, de Toledo SL, de Oliveira C. Tablas brasileñas para aves y cerdos. En: Santiago Rostagno, editor. Composición de Alimentos y Requerimientos Nutricionales. 4th ed. Brasil: Federal University of Viçosa [Internet]. 2017 [cited 23 Nov. 2024]; 4(1):488. Available in: https://goo.su/WJi8TI

McDowell LR, Conrad JE, Thomasn JE, Harris LE. Latin American tables of feed composition. Gainesville, Fl: University of Florida; 1974. 552p.

Hanson S, Olley J. Application of the Bligh and Dyer method of lipid extraction to tissue homogenates. J. Biochem. Ency. [Internet]. 1963 [cited 16 Dic. 2024]; 89:101˗102. Available in: https://goo.su/g7VnVc

Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethyl acetals from lipids with boron fluoride methanol. J. Lipid Res. [Internet]. 1964; 5(4):600˗608. doi: https://doi.org/pv9m DOI: https://doi.org/10.1016/S0022-2275(20)40190-7

Mach F, Baigent C, Catapano AL, Koskinas KC. Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, Graham IM, Halliday A, Landmesser U, Mihaylova B, Pedersen TR, Riccardi G, Richter DJ, Sabatine MS, Taskinen MR, Tokgozoglu L, Wiklund O.2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. [Internet]. 2020; 41(1):111–188. doi: https://doi.org/gf7pkg DOI: https://doi.org/10.15829/1560-4071-2020-3826

Pearson GJ, Thanassoulis G, Anderson TJ, Barry AR, Couture P, Dayan N, Francis GA, Genest J, Grégoire J, Grover SA, Gupta M, Hegele RA, Lau D, Leiter LA, Leung AA, Lonn E, Mancini J, Manjoo P, McPherson R, Ngui D, Piché ME, Poirier P, Sievenpiper J, Stone J, Ward R, Wray W. Canadian Cardiovascular Society guidelines for the management of slipidemia for the prevention of cardiovascular disease in adults. Can. J. Cardiol. [Internet]. 2021; 37(8):1129-1150. doi: https://doi.org/gtcsvt DOI: https://doi.org/10.1016/j.cjca.2021.03.016

Chen PY, Yin-Chieh C, Clemons G, Citadin C, Couto A, Possoit H, Azizbayeva R, Forren N, Liu CH, Shashanka KN, Krzywanski D, Lee R, Neumann J, Lin H. Stearic acid methyl ester affords neuroprotection and improves functional outcomes after cardiac arrest. Prostaglandins Leukot. Essent. Fatty Acids. [Internet]. 2020; 159:102138. doi: https://doi.org/pv9n DOI: https://doi.org/10.1016/j.plefa.2020.102138

Duran-Montgé P, Theil PK, Lauridsen C, Esteve-García E. Fat metabolism is regulated by altered gene expression of lipogenic enzymes and regulatory factors in liver and adipose tissue but not in semimembranosus muscle of pigs during the fattening period. Animal. [Internet]. 2009; 3(11):1580-1590. doi: https://doi.org/d4qr7k DOI: https://doi.org/10.1017/S1751731109990450

Benítez R, Núñez Y, Fernández A, Isabel B, Rodríguez C, Daza A, López-Bote C, Silió L, Óvilo C. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets. Animal. [Internet]. 2016; 10(6):939-946. doi: https://doi.org/f8p748 DOI: https://doi.org/10.1017/S1751731115003055

Dzib-Cauich DA, Sierra AC, Lemus-Flores C, Bugarín-Prado JO, Grageola Núñez F, Segura Correa JC, Moo Huchin VM. Effects of Moringa oleifera and Brosimum alicastrum partial feed substitution in intramuscular fat and adipose tissues and on the expression of lipogenic genes of Mexican hairless pigs. Austral. J. Vet. Sci. [Internet]. 2021; 53(3):153-160. doi: https://doi.org/pv9p DOI: https://doi.org/10.4067/S0719-81322021000300153

Meng Q, Sun S, Sun Y, Li J, Wu D, Shan A, Shi B, Cheng B. Effects of dietary lecithin and L-carnitine on fatty acid composition and lipid metabolic genes expression insubcutaneous fat and longissimus thoracis of growing-finishing pigs. Meat Sci. [Internet]. 2018; 136:68–78. doi: https://doi.org/gctcd5 DOI: https://doi.org/10.1016/j.meatsci.2017.10.012

Alcívar EH, Fernández Y, Vivas WF, Cusme KE, Verduga, CD, Heredia JD. Evaluación del potencial nutritivo de especies arbustivas tropicales para la alimentación de cerdos de traspatio. Cienc. Tecnol. Agropecu. [Internet]. 2023; 24(3):2991. doi: https://doi.org/pgsm DOI: https://doi.org/10.21930/rcta.vol24_num3_art:2991

Dzib-Cauich DA, Lemus-Flores C, Bugarín-Prado JO, Ayala-Valdovinos MA, Moo-Huchin VM. Perfil de ácidos grasos en músculo Longissimus dorsi y expresión de genes asociados con metabolismo lipídico en cerdos pelón mexicanos y cerdos Landrace-Yorkshire. Livest. Res. Rural Dev. [Internet]. 2020; 32(7):115. doi: https://goo.su/vMUIG

Skřivan M, Marounek M, Englmaierová M, Skřivanová E. Influence of dietary vitamin C and selenium, alone and in combination, on the composition and oxidative stability of meat of broilers. Food Chem. [Internet]. 2012; 130(3):660-664. doi: https://doi.org/c48vcv DOI: https://doi.org/10.1016/j.foodchem.2011.07.103

Fernández AI, Óvilo C, Barragán C, Rodríguez MC, Silió L, Folch JM, Fernández A. Validating porcine SCD haplotype effects on fatty acid desaturation and fat deposition in different genetic backgrounds. Livest. Sci. [Internet]. 2017; 205:98-105. doi: https://doi.org/pwb2 DOI: https://doi.org/10.1016/j.livsci.2017.09.021

Teye GA, Sheard PR, Whittington FM, Nute GR, Stewart A, Wood JD. Influence of dietary oils and protein level on pork quality. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. [Internet]. 2006; 73(1):157-165. doi: https://doi.org/dmjc49 DOI: https://doi.org/10.1016/j.meatsci.2005.11.010

Martínez J, Torres PV, Juárez MA. Los ácidos grasos y la lipotoxicidad: implicaciones metabólicas. Rev. Fac. Med. (México). [Internet]. 2013 [cited 6 Ene. 2024]; 56(1):5-18. Available in: https://goo.su/ijFqSUo

Pérez-Palacios T, Ruíz J, Antequera T. Perfil de ácidos grasos de la grasa subcutánea e intramuscular de cerdos ibéricos cebados en montanera y con pienso “alto oleico”. Eurocar. [Internet]. 2008 [cited 18 Dic. 2024]; 163:159-170. Available in: https://goo.su/Vizm2s

Valenzuela BR, Tapia OG, González EM, Valenzuela BA. Omega-3 fatty acids (EPA and DHA) and its application in diverse clinical situations. Rev. Chil. Nutr. [Internet]. 2011; 38(3):356-367. doi: https://doi.org/hsfb DOI: https://doi.org/10.4067/S0717-75182011000300011

Socarrás M, Bolet M. Healthy feeding and nutrition in cardiovascular diseases. Rev. Cubana Inv. Bioméd. [Internet]. 2010 [cited 18 Dic. 2024]; 29(3):353-363. Available in: https://goo.su/ZKUKo1

Castellón-Moya CT, Lemus-Flores C, Bugarín-Prado TO, Grageola-Nùñez F, Dzib-Cauich DA, Ángel-Hernández A, García Cuvarrubias JG. Evaluación nutricional química proximal de árboles de Morera (Morus alba), Moringa (Moringa oleifera) y Chaya (Cnidoscolus aconitifolius) como alternativa nutricional para cerdas. Braz. J. Anim. Environ. Res. [Internet]. 2023; 6(3):2550-2556. doi: https://doi.org/pgsx DOI: https://doi.org/10.34188/bjaerv6n3-047

Wu JH, Lemaitre RN, Imamura F, King IB, Song X, Spiegelman D, Siscovick DS, Mozaffarian D. Fatty acids in the de novo lipogenesis pathway and risk of coronary heart disease: the Cardiovascular Health Study. Am. J. Clin. Nutr. [Internet]. 2011; 94(2):431-438. doi: https://doi.org/bxkscd DOI: https://doi.org/10.3945/ajcn.111.012054

Publicado
2025-07-19
Cómo citar
1.
Castellón-Moya CT, Lemus-Flores C, Dzib-Cauich DA, Oney-Montalvo JE, Grageola-Núñez F, Bugarín-Prado JO, Pat-Moreno NI. Perfil de ácidos grasos en la grasa dorsal y en el músculo Longisimus dorsi de lechones Pelones post-destetados alimentados con hojas de arbóreas. Rev. Cient. FCV-LUZ [Internet]. 19 de julio de 2025 [citado 28 de julio de 2025];35(3):10. Disponible en: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/44125
Sección
Producción Animal