Medidas Perfectas, Espacios Nucleares y la Propiedad de Compacidad Convexa
Resumen
Se prueba que para ciertos tipos de K-espacios $X$, los espacios $(C_{b}(X,E),\beta_{p})$ tienen la propiedad de compacidad convexa si $E$ es un espacio de Banach. También, si $X$ es un K-espacio real-compacto, entonces $(C_{b}(X,E),\beta_{p})$ es un espacio nuclear si y solo si $X$ es finito y $E$ es finito dimensional.
Citas
S. Choo, Strict topologies on spaces of continuous vector-valued functions , Canad. J. Math. XXXI (1979), 890-896.
S. S. Khurana, Topologies on spaces of vector-valued continuous functions , Trans. Amer. Math. Soc. 24 (1978), 95-211.
S. S. Khurana and J.E.Vielma, Strict topologies and perfect measures , Czechoslovac Math. J. 40 (1990), 1-7.
G. Koumoullis, Perfect, u-additive measures and strict topologies , Illinois J. Math. 26 (1982), 466-478.
H. H. Schaefer, Topological vector spaces , Macmillan New York. 1966.
F. D. Sentiles, Bounded continuous functions on completely regular spaces , Trans. Amer. Math. Soc. 168 (1972).
R. Wheeler, The strict topology for P-spaces , Proc. Amer. Math. Soc. 41 (1973), 466-472.
R. Wheeler, A survey of Baire measures and strict toplogies , Expo. Math. 2 (1983), 97-190.