Generalización del estimador de Kaplan-Meier para tiempos de vida difusos.
Resumen
Esta propuesta entrega una generalización del estimador de Kaplan-Meier, en la cual los tiempos de vida son considerados números difusos. Esta propuesta se sitúa en un contexto mucho más real para el proceso de medición, considerando la imprecisión propia de la naturaleza humana. Es necesario para ello la definición de algunos conceptos como frecuencia relativa y clases difusas. Se presentan algunos resultados asintóticos y finalmente una aplicación y comparación con la metodología convencional de estimación.
Citas
Amato, D. A. A generalized kaplan-meier estimator for heterogenous population. Communications in Statistics-Theory and Methods, 17(1)(1988), 263-286.
Bitouze, D., Laurent, B. and Massart, P. A dvoretzky – kiefer – wolfowitz type inequality for the kaplan–meier estimator. In Annales de l’Institut Henri Poincare (B) Probability and Statistics, 35(1)(1999), 735-763.
Breslow, N. Covariance analysis of censored survival data. Biometrics, 3(1)(1974), 89-99.
Cai, Z. Asymptotic properties of kaplan-meier estimator for censored dependent data. Statistics and probability letters, 37(4)(1998), 381-389.
Colosimo, E. A. and Giolo, S. R. Análise de sobrevivencia aplicada. In ABE-Projeto Fisher, Edgard Blucher, Sao Paulo, Brasil, 2006.
Dabrowska, D. M. Kaplan-meier estimate on the plane. The Annals of Statistics, 7(4) (1988), 1475-1489.
Dabrowska, D. M. Kaplan-meier estimate on the plane: weak convergence, lil, and the bootstrap. Journal of Multivariate analysis, 29(2)(1989), 308-325.
Dubois, D. and Prade, H.Operations on fuzzy numbers. International Journal of systems science, 9(6)(1978), 613-626.
Egusa, Y., Akahori, H., Morimura, A. and Wakami, N. An application of fuzzy set theory for an electronic video camera image stabilizer. Fuzzy Systems, IEEE Transactions on, 3(3)(1995), 351-356.
Goguen, J. A. L-fuzzy sets. Journal of mathematical analysis and applications, 18(1)(1967), 145-174.
González C., J. A. Estatística e a teoria de conjuntos fuzzy. Tese Doutorado Universidade Estadual de Campinas, Brasil, 1(1)(2015), 1-77.
Gregory, P. B., Knauer, C. M., Kempson, R. L. and Miller, R. Steroid therapy in severe viral hepatitis: A double-blind, randomized trial of methyl-prednisolone versus placebo. New England Journal of Medicine, 294(13)(1976), 681-687.
Huang, H.-Z., Zuo, M. J. and Sun, Z.-Q. Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets and Systems, 157(12)(2006), 1674-1686.
Meier-Kriesche, H.-U., Schold, J. D. and Kaplan, B., {it Long-term renal allograft survival: Have we made significant progress or is it time to rethink our analytic and therapeutic strategies?}, American Journal of Transplantation, {bf4}(8)(2004), 1289-1295.
Nasseri, S., Taleshian, F., Alizadeh, Z. and Vahidi, J. A new method for ordering lr fuzzy number. The Journal of Mathematics and Computer Science, 4(3)(2012), 283-294.
Stute, W. The jackknife estimate of variance of a kaplan-meier integral. The Annals of Statistics, 24(6)(1996), 2679-2704.
Van der Vaart, A. W. Asymptotic statistics. Cambridge university press, 2000.
Viertl, R. On reliability estimation based on fuzzy lifetime data. Journal of Statistical Planning and Inference, 139(5)(2009), 1750-1755.
Wang, L.-X. A course in fuzzy systems. Prentice-Hall press, USA, 1999.
Xie, J. and Liu, C. Adjusted kaplan–meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Statistics in medicine, 24(20)(2005), 3089-3110.
Zadeh, L. A. Fuzzy sets. Information and control, 8(3)(1965), 338-353.
Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoningi. Information sciences, 8(3)(1975), 199-249.