Lema de Poincaré para un álgebra de Heisenberg semitrenzada.
Resumen
Un álgebra semitrenzada es un álgebra $A$ sobre un anillo conmutativo $\L$ con unidad, equipada con un operador $R\in\End(A\otimes A)$ que satisface la ecuación de Yang-Baxter, $R(1\otimes a)=a\otimes1$ y $R(a\otimes1)=1\otimes a$. El cálculo diferencial semitrenzado $\Omega_{R}(A)$ se obtiene del cálculo diferencial universal módulo las relaciones $a\,db=\sum_i(db^i)a_i$, donde $R(a\otimes b)= \sum_ia_i\otimes b_i$. Demostramos una versión del Lema de Poincaré para el álgebra semitrenzada de Heisenberg sobre $\mathbb{R}[x]$.
Citas
Baez, N. R-commutative geometry and quantization of Poisson algebras. Adv. Math. 95 (1992), 61-91.
Baez, N. Differential calculi on quantum vector spaces with Hecke-type relations. Lett. Math. Phys. 23 (1991), 133-141.
Bergman, G. The diammond lemma for ring theory. Adv. in Math. 29 (1978), 178-218.
Cenkl, B. Noncommutative geometry. Course Notes, Northeastern University, Boston, 1998.
Cenkl, B. and Porter, R. Differential forms and torsion in the fundamental group. Adv. in Math. 48(2) (1983), 189-204.
Connes, A. Noncommutative differential geometry. Publ. Math. IHES, 62 (1985), 257-360.
Connes, A. Noncommutative geometry. Academic Press, San Diego, CA, 1994.
Gracía-Bondía, J.M., Várilly, J.C. and Figueroa, H. Elements of noncommutative geometry. Birkhäuser, Boston, 2001.
Karoubi, M. Algebres tressees et q-cohomologie. (preprint).
Karoubi, M. Formes différentielles non commutatives et cohomologie a coefficients arbitraires. Trans. Amer. Math. Soc., 374 (1995), 4277-4299.
Kassel, C. Quantum groups. Springer-Verlag, Nueva York, 1995.
MacLane, S. Homology. Springer-Verlag,Nueva York, 1976.
Mejías, L. The de Rham tehorem for the noncommutative complex of Cenkl and Porter. Internat. J. Math. Math. Sci., 30(11) (2002), 667-696.
Munkres, J. Elements of algebraic topology. Addison-Wesley, Reading, Massachusetts, 1984.
Spanier, E. Algebraic topology. Springer-Verlag, Nueva York, 1966.
Spivak, M. A comprehensive introduction to differential geometry (volumen I, tercera edición), Publish or Perish, Houston, 1999.