Coincidencias en las sucesiones de Padovan y Tribonacci.
Resumen
Sea $(P_n)_{n\geqslant 0}$ la sucesión de Padovan definida mediante $P_0=0$, $P_1=P_2=1$ y la fórmula de recurrencia $P_{n+3}=P_{n+1}+P_n$ para todo $n\geqslant 0$. Sea $(T_n)_{n\geqslant 0}$ la sucesión de Tribonacci definida mediante $T_0=0$, $T_1=T_2=1$ y la fórmula de recurrencia $T_{n+3}=T_{n+2}+T_{n+1}+T_n$ para todo $n\geqslant 0$. En este escrito resolvemos la ecuación Diofántica
$$P_n=T_m$$
en enteros no negativos $n,m$. En particular, encontramos todos los elementos en la intersección de las sucesiones de Padovan y Tribonacci.
Citas
M. Bennett, A. Pintér. Intersections of recurrence sequences. Proc. Amer. Math. Society, 143(2015), 2347-2353.
J.J. Bravo, F. Luca. Coincidences in generalized Fibonacci sequences. J. Number Theory, 133(2013), 2121-2137.
J.J. Bravo, C. A. and Gomez, F. Luca. Powers of two as sums of two k-Fibonacci numbers Miskolc Math. Notes, 17(1)(2016), 85-100.
Y. Bugeaud, M. Mignotte and S. Siksek. Classical and modular approaches to exponential diophantine equations I: Fibonacci and Lucas perfect powers. Ann. of Math. 163(2006), 969-1018.
A. Dujella, A. Pethő. A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford, 49 (3)(1998), 291-306.
A.C. García Lomelí and S. Hernández Hernández. Powers of two as sums of to Padovan numbers. submitted.
S. Guzmán Sánchez and F. Luca. Linear combinations of factorials and S-units in a binary recurrence sequence. Ann. Math. Québec, 38(2014), 169-188.
D. Marques. On the intersection of two distinct k-generalized Fibonacci sequences. Mat. Bohemica, 137(4)(2012), 403-413.
E. M. Matveev. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II. Izv. Math 64(6)(2000), 217-1269.
M. Mignotte. Intersection des images de certains suites récurrentes linéaires. Theoret. Comput. Science, 7(1978), 117-122.
N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/
I. Stewart. Mathematical recreations: Tales of a neglected number. Sci. American, 274(1996), 92-93.
B.M.M, de Weger. Padua and Pisa are exponentially far apart. Pub. Matemátiques, 41(1997), 631-651.