Inserción de una función Contra-Baire-1 (Baire-.5)
Palabras clave:
Inserción, relación binaria fuerte, funcin Baire-.5, núcleo de conjuntos, conjunto de corte inferior
Resumen
Se proporciona una condición necesaria y suficiente en términos de conjuntos de cortes inferiores para la inserción de una función Baire-.5 entre dos funciones comparables de valores reales en los espacios topológicos donde el $F_{\sigma}$-kernel de los conjuntos es $F_{\sigma}$-sets.
Citas
A. Al-Omari and M.S. Md Noorani. Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2) (2009), 213–230.
F. Brooks. Indefinite cut sets for real functions. Amer. Math. Monthly, 78(1971), 1007–1010.
M. Caldas and S. Jafari. Some properties of contra-β−continuous functions. Mem. Fac. Sci. Kochi. Univ., 22(2001), 19–28.
J. Dontchev. The characterization of some peculiar topological space via α− and β−sets.nActa Math. Hungar., 69(1-2) (1995), 67–71.
J. Dontchev. Contra-continuous functions and strongly S-closed space. Intrnat. J. Math. Math. Sci., 19(2) (1996), 303–310.
J. Dontchev and H. Maki. On sg-closed sets and semi−λ−closed sets. Questions Answers Gen. Topology, 15(2) (1997), 259–266.
E. Ekici. On contra-continuity. Annales Univ. Sci. Bodapest, 47 (2004), 127–137.
E. Ekici. New forms of contra-continuity. Carpathian J. Math., 24(1) (2008), 37–45.
A.I. El-Magbrabi. Some properties of contra-continuous mappings. Int. J. General Topol., 3(1-2) (2010), 55–64.
M. Ganster and I. Reilly. A decomposition of continuity. Acta Math. Hungar., 56(3-4) (1990), 299–301.
S. Jafari and T. Noiri. Contra-continuous function between topological spaces. Iranian Int. J. Sci., 2 (2001), 153–167.
S. Jafari and T. Noiri. On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25 (2002), 115–128.
M. Katětov. On real-valued functions in topological spaces. Fund. Math., 38 (1951), 85–91.
M. Katětov. Correction to, ”On real-valued functions in topological spaces”. Fund. Math., 40 (1953), 203–205.
E. Lane. Insertion of a continuous function. Pacific J. Math., 66 (1976), 181–190.
H. Maki. Generalized Λ−sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA’s Retirement, (1986), 139–146.
S. N. Maheshwari and R. Prasad On R Os -spaces. Portugal. Math., 34 (1975), 213–217.
M. Mirmiran. Insertion of a function belonging to a certain subclass of R X . Bull. Iran. Math. Soc., Vol. 28, No. 2 (2002), 19–27.
M. Mrsevic. On pairwise R and pairwise R 1 bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30 (1986), 141–145.
A.A. Nasef. Some properties of contra-continuous functions. Chaos Solitons Fractals, 24 (2005), 471–477.
M. Przemski. A decomposition of continuity and α−continuity. Acta Math. Hungar., 61(1-2) (1993), 93–98.
H. Rosen. Darboux Baire-.5 functions. Proceedings of The American Mathematical Society, 110(1) (1990), 285–286.
M.H. Stone. Boundedness properties in function-lattices. Canad. J. Math.,1 (1949), 176–189.
F. Brooks. Indefinite cut sets for real functions. Amer. Math. Monthly, 78(1971), 1007–1010.
M. Caldas and S. Jafari. Some properties of contra-β−continuous functions. Mem. Fac. Sci. Kochi. Univ., 22(2001), 19–28.
J. Dontchev. The characterization of some peculiar topological space via α− and β−sets.nActa Math. Hungar., 69(1-2) (1995), 67–71.
J. Dontchev. Contra-continuous functions and strongly S-closed space. Intrnat. J. Math. Math. Sci., 19(2) (1996), 303–310.
J. Dontchev and H. Maki. On sg-closed sets and semi−λ−closed sets. Questions Answers Gen. Topology, 15(2) (1997), 259–266.
E. Ekici. On contra-continuity. Annales Univ. Sci. Bodapest, 47 (2004), 127–137.
E. Ekici. New forms of contra-continuity. Carpathian J. Math., 24(1) (2008), 37–45.
A.I. El-Magbrabi. Some properties of contra-continuous mappings. Int. J. General Topol., 3(1-2) (2010), 55–64.
M. Ganster and I. Reilly. A decomposition of continuity. Acta Math. Hungar., 56(3-4) (1990), 299–301.
S. Jafari and T. Noiri. Contra-continuous function between topological spaces. Iranian Int. J. Sci., 2 (2001), 153–167.
S. Jafari and T. Noiri. On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25 (2002), 115–128.
M. Katětov. On real-valued functions in topological spaces. Fund. Math., 38 (1951), 85–91.
M. Katětov. Correction to, ”On real-valued functions in topological spaces”. Fund. Math., 40 (1953), 203–205.
E. Lane. Insertion of a continuous function. Pacific J. Math., 66 (1976), 181–190.
H. Maki. Generalized Λ−sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA’s Retirement, (1986), 139–146.
S. N. Maheshwari and R. Prasad On R Os -spaces. Portugal. Math., 34 (1975), 213–217.
M. Mirmiran. Insertion of a function belonging to a certain subclass of R X . Bull. Iran. Math. Soc., Vol. 28, No. 2 (2002), 19–27.
M. Mrsevic. On pairwise R and pairwise R 1 bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30 (1986), 141–145.
A.A. Nasef. Some properties of contra-continuous functions. Chaos Solitons Fractals, 24 (2005), 471–477.
M. Przemski. A decomposition of continuity and α−continuity. Acta Math. Hungar., 61(1-2) (1993), 93–98.
H. Rosen. Darboux Baire-.5 functions. Proceedings of The American Mathematical Society, 110(1) (1990), 285–286.
M.H. Stone. Boundedness properties in function-lattices. Canad. J. Math.,1 (1949), 176–189.
Publicado
2019-06-29
Cómo citar
Mirmiran, M., & Naderi, B. (2019). Inserción de una función Contra-Baire-1 (Baire-.5). Divulgaciones Matemáticas, 20(1), 39-48. Recuperado a partir de https://mail.produccioncientificaluz.org/index.php/divulgaciones/article/view/36620
Sección
Artículos de Investigación