Sobre algunas propiedades interesantes de la ecuación p–laplaciana.

  • Gustavo Asumu Mboro Nchama Universidad Nacional de Guinea Ecuatorial
  • Mariano Rodrı́guez Ricard Facultad de Matemtica y Computación, Universidad de la Habana
  • Ángela León Mecı́as Facultad de Matemtica y Computación, Universidad de la Habana
Palabras clave: Solución singular, ecuación p–laplaciana, función p–armónica

Resumen

En el presente artı́culo establecemos, por una parte, algunas soluciones singulares concernientes a la ecuación 1–lapaciana. Por otro lado, damos algunas propiedades relacionadas a la debil solución de la ecuación p–laplaciana.

Citas

ZuChi Chen and Tao Luo. The eigenvalue problem for the p–laplacian like equations. I.J.M.M.S., S0161171203006744 (2011), 575–576.

Benjin Xuan. Existence results for a superlinear p–laplacian equation with indefinite weights. Nonlinear Analysis 54 (2003), 949–950.

Fang Li and Zuodong Yang. Existence of positive solutions of singular p–laplacian equations in a ball. J. Nonlinear Sci. Appl. 5 (2012), 44–45.

Huashui Zhan and Zhaosheng Feng. Existence of solutions to an evolution p–laplacian equation with a nonlinear gradient term. Electronic Journal of Differential Equations, 2017(311) (2017), 1–2.

Patrizia Pucci and Raffaella Servadei. On weak solutions for p–laplacian equations with weights. Rend. Lincei Mat. Appl. 18 (2017), 257–258.

Patrizia Pucci and Raffaella Servadei. On weak solutions for p–laplacian equations with weights. Discrete and continuos Dynamical Systems, Supplement Volume 2007, 1–2.

Haim Brezis. Analyse fonctionnelle, théorie et applications. Masson, Paris, 1987.

Lawrence C. Evans. Partial Differential Equations. American Mathematical Society Equations. 19.

Abimbola Abolarinwa. The first figenvalue of p–laplacian and geometric estimates. Nonl. Analysis and Differential Equations. 2 (2014), 105–106.

Lorenzo Brasco and Erik Lindgren. Higher Sobolev regularity for the fractional p–Laplace equation in the superquadratic case. Advances in Mathematics, Elsevier. 304 (2017), 1–2.

Aomar Anane et. al.. Nodal domains for the p–laplacian, Advances in Dynamical Systems and Applications. 2 (2007), 135–136.

N. Sauer. Properties of bilinear forms on Hilbert spaces related to stability properties of certain partial differential operators. Journal of Mathematical Analysis and Applications. 20 (1967), 124–126.
Publicado
2019-12-29
Cómo citar
Mboro Nchama, G. A., Rodrı́guez RicardM., & León Mecı́as Ángela. (2019). Sobre algunas propiedades interesantes de la ecuación p–laplaciana. Divulgaciones Matemáticas, 20(2), 63-71. Recuperado a partir de https://mail.produccioncientificaluz.org/index.php/divulgaciones/article/view/36631
Sección
Artículos de Investigación