Treatment in Infections by Enterobacterales Producing Extended Spectrum Betalactamase. Systematic Review

  • Carli Samira Aziz Delgado Universidad de Los Andes. Facultad de Medicina. Extensión Valera. Valera-Trujillo. Venezuela https://orcid.org/0000-0001-5096-114X
  • Dr José Mendoza Gaviria Universidad de Los Andes. Facultad de Medicina. Cátedra de Microbiología. Mérida-Mérida
Keywords: Enterobacterales, infection, beta-lactamase, beta-lactamase inhibitors, Enterobacteriaceae/enzymology, therapeutics

Abstract

Extended spectrum beta-lactamases producing Enterobacterales have become pandemic worldwide representing a major public health threat due to poor outcomes and high mortality associated with infections by these bacteria, consequently it is essential to conduct a systematic review to document the antibiotic combination used to fight infections, in order to categorize and sort the most widely used treatments and determine the most effective ones. The electronic search was conducted since June 2020 until August 2020. The databases used were PubMed, Virtual Health Library, ScienceDirect and the Cochrane library; the following Medical Subject Headings (MESH) were used: “Enterobacterales”, “infection”, “beta-lactamase”, “beta-lactamase inhibitors”, “therapeutics”, “Enterobacteriaceae/enzymology”. The electronic search resulted in 1.526 articles meeting the general criteria, 1.493 articles were excluded; only 35 articles met all the inclusion criteria. there is basically no tangible difference between treatment with beta-lactam antibiotics (either combinations or carbapenem), fluoroquinolones, tetracyclines and Fosfomycin in patients without any pre-existing antibiotic resistance. It is required developing antibiotics, with the understanding that the microorganism will respond to them and resistance will develop (an evolutionary fact). Therefore, efforts to develop antibiotics and study mechanisms of resistance should be continuous, resilient, and steady

References

Sfeir MM, Askin G, Christos P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;52(5):554-70. Available in: https://www.sciencedirect.com/science/article/pii/S0924857918302206 DOI: 10.1016/j.ijantimicag.2018.07.021 PMID 30081138

Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev [Internet]. 2020;44(2):171-88. Available in: https://doi.org/10.1093/femsre/fuaa001 DOI: 10.1093/femsre/fuaa001 PMID 31981358

Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era. Clin Microbiol Rev [Internet]. 2021;32(2):e00066-18. Available in: https://doi.org/10.1128/CMR.00066-18 DOI: 10.1128/CMR.00066-18 PMID 30651225 PMCID PMC6431132

Nørgaard SM, Jensen CS, Aalestrup J, Vandenbroucke-Grauls CMJE, de Boer MGJ, Pedersen AB. Choice of therapeutic interventions and outcomes for the treatment of infections caused by multidrug-resistant gram-negative pathogens: a systematic review. Antimicrob Resist Infect Control [Internet]. 2019;8(1):170. Available in: https://doi.org/10.1186/s13756-019-0624-1 DOI: 10.1186/s13756-019-0624-1 PMID 31709047 PMCID PMC6830003

Leber A. Extended-Spectrum Beta-Lactamase Testing for Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, and Proteus mirabilis. En: Clinical Microbiology Procedures Handbook [Internet]. 4th ed. Washington DC-USA: ASM Press; 2016. p. 5.12.1-5.12.7. Available in: https://doi.org/10.1128/9781555818814.ch5.12 DOI: 10.1128/9781555818814.ch5.12

Sloan C, Edwards CJ. Extended Spectrum Beta-Lactamase. En: Frazee BW, Chin RL, Coralic Z, editores. Emergency Management of Infectious Diseases [Internet]. 2.a ed. Cambridge: Cambridge University Press; 2018. p. 552-5. Available in: https://www.cambridge.org/core/books/emergency-management-of-infectious-diseases/extended-spectrum-betalactamase/219B1529DCD7A649E6729E48DFCC1159 DOI: 10.1017/9781316597095.078

Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med [Internet]. 2016;6(8):a025247. Available in: http://perspectivesinmedicine.cshlp.org/content/6/8/a025247.long DOI: 10.1101/cshperspect.a025247 PMID 27329032 PMCID PMC4968164

Bush K. Past and Present Perspectives on β-Lactamases. Antimicrob Agents Chemother [Internet]. 2018;62(10):e01076-18. Available in: https://doi.org/10.1128/AAC.01076-18 DOI: 10.1128/AAC.01076-18 PMID 30061284 PMCID PMC6153792

Chastain DB, White BP, Cretella DA, Bland CM. Is It Time to Rethink the Notion of Carbapenem-Sparing Therapy Against Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae Bloodstream Infections? A Critical Review. Ann Pharmacother [Internet]. 2017;52(5):484-92. Available in: https://doi.org/10.1177/1060028017748943 DOI: 10.1177/1060028017748943 PMID 29239220

Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2012;67(12):2793-803. Available in: https://doi.org/10.1093/jac/dks301 DOI: 10.1093/jac/dks301 PMID 22915465

Rattanaumpawan P, Werarak P, Jitmuang A, Kiratisin P, Thamlikitkul V. Efficacy and safety of de-escalation therapy to ertapenem for treatment of infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: an open-label randomized controlled trial. BMC Infect Dis [Internet]. 2017;17(1):183. Available in: https://doi.org/10.1186/s12879-017-2284-1 DOI: 10.1186/s12879-017-2284-1 PMID 28249572 PMCID PMC5333449

Gutiérrez-Gutiérrez B, Bonomo RA, Carmeli Y, Paterson DL, Almirante B, Martínez-Martínez L, et al. Ertapenem for the treatment of bloodstream infections due to ESBL-producing Enterobacteriaceae: a multinational pre-registered cohort study. J Antimicrob Chemother [Internet]. 2016;71(6):1672-80. Available in: https://doi.org/10.1093/jac/dkv502 DOI: 10.1093/jac/dkv502 PMID 26907184 PMCID PMC4867097

Son SK, Lee NR, Ko J-H, Choi JK, Moon S-Y, Joo EJ, et al. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2018;73(10):2631-42. Available in: https://doi.org/10.1093/jac/dky168 DOI: 10.1093/jac/dky168 PMID 29800480

Pilmis B, Delory T, Groh M, Weiss E, Emirian A, Lecuyer H, et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) infections: are carbapenem alternatives achievable in daily practice? Int J Infect Dis [Internet]. 2015;39:62-7. Available in: https://doi.org/10.1016/j.ijid.2015.08.011 DOI: 10.1016/j.ijid.2015.08.011 PMID 26327124

Wu U-I, Chen W-C, Yang C-S, Wang J-L, Hu F-C, Chang S-C, et al. Ertapenem in the treatment of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli: a propensity score analysis. Int J Infect Dis [Internet]. 2012;16(1):e47-52. Available in: https://doi.org/10.1016/j.ijid.2011.09.019 DOI: 10.1016/j.ijid.2011.09.019 PMID 22055248

Sharma R, Park TE, Moy S. Ceftazidime-Avibactam: A Novel Cephalosporin B-Lactamase Inhibitor Combination for the Treatment of Resistant Gram-negative Organisms. Clin Ther [Internet]. 2016;38(3):431-44. Available in: https://doi.org/10.1016/j.clinthera.2016.01.018 DOI: 10.1016/j.clinthera.2016.01.018 PMID 26948862

Che H, Wang R, Wang J, Cai Y. Ceftazidime/avibactam versus carbapenems for the treatment of infections caused by Enterobacteriaceae: A meta-analysis of randomised controlled trials. Int J Antimicrob Agents [Internet]. 2019;54(6):809-13. Available in: https://www.sciencedirect.com/science/article/pii/S092485791930250X DOI: 10.1016/j.ijantimicag.2019.09.007 PMID 31533075

Bush K. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents [Internet]. 2015;46(5):483-93. Available in: https://www.sciencedirect.com/science/article/pii/S0924857915003180 DOI: 10.1016/j.ijantimicag.2015.08.011 PMID 26498989

Stone GG, Newell P, Bradfordc PA. In Vitro Activity of Ceftazidime-Avibactam against Isolates from Patients in a Phase 3 Clinical Trial for Treatment of Complicated Intra-abdominal Infections. Antimicrob Agents Chemother [Internet]. 2021;62(7):e02584-17. Available in: https://doi.org/10.1128/AAC.02584-17 DOI: 10.1128/AAC.02584-17 PMID 29686147 PMCID PMC6021638

Stone GG, Newell P, Gasink LB, Broadhurst H, Wardman A, Yates K, et al. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J Antimicrob Chemother [Internet]. 2018;73(9):2519-23. Available in: https://doi.org/10.1093/jac/dky204 DOI: 10.1093/jac/dky204 PMID 29912399

Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed. Lancet Infect Dis [Internet]. 2016;16(6):661-73. Available in: https://doi.org/10.1016/S1473-3099(16)30004-4 DOI: 10.1016/S1473-3099(16)30004-4 PMID 27107460

Zhong H, Zhao X-Y, Zhang Z-L, Gu Z-C, Zhang C, Gao Y, et al. Evaluation of the efficacy and safety of ceftazidime/avibactam in the treatment of Gram-negative bacterial infections: a systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;52(4):443-50. Available in: https://www.sciencedirect.com/science/article/pii/S092485791830195X DOI: 10.1016/j.ijantimicag.2018.07.004 PMID 30012440

Harris PNA, Tambyah PA, Lye DC, Mo Y, Lee TH, Yilmaz M, et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E. coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA [Internet]. 2018;320(10):984-94. Available in: https://doi.org/10.1001/jama.2018.12163 DOI: 10.1001/jama.2018.12163 PMID 30208454 PMCID PMC6143100

Liscio JL, Mahoney M V, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents [Internet]. 2015;46(3):266-71. Available in: https://www.sciencedirect.com/science/article/pii/S0924857915002034 DOI: 10.1016/j.ijantimicag.2015.05.003 PMID 26143591

Solomkin J, Hershberger E, Miller B, Popejoy M, Friedland I, Steenbergen J, et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin Infect Dis [Internet]. 2015;60(10):1462-71. Available in: https://doi.org/10.1093/cid/civ097 DOI: 10.1093/cid/civ097 PMID 25670823 PMCID PMC4412191

Sutherland CA, Nicolau DP. Susceptibility Profile of Ceftolozane/Tazobactam and Other Parenteral Antimicrobials Against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa From US Hospitals. Clin Ther [Internet]. 2015;37(7):1564-71. Available in: https://doi.org/10.1016/j.clinthera.2015.05.501 DOI: 10.1016/j.clinthera.2015.05.501 PMID 26088525

Popejoy MW, Paterson DL, Cloutier D, Huntington JA, Miller B, Bliss CA, et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother [Internet]. 2017;72(1):268-72. Available in: https://doi.org/10.1093/jac/dkw374 DOI: 10.1093/jac/dkw374 PMID 27707990

Hooper DC, Jacoby GA. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med [Internet]. 2016;6(9). Available in: http://perspectivesinmedicine.cshlp.org/content/6/9/a025320.long#cited-by DOI: 10.1101/cshperspect.a025320 PMID 27449972 PMCID PMC5008060

Wiener ES, Heil EL, Hynicka LM, Johnson JK. Are Fluoroquinolones Appropriate for the Treatment of Extended-Spectrum β-Lactamase-Producing Gram-Negative Bacilli? J Pharm Technol [Internet]. 2015;32(1):16-21. Available in: https://doi.org/10.1177/8755122515599407 DOI: 10.1177/8755122515599407 PMCID PMC5998409

Punjabi C, Tien V, Meng L, Deresinski S, Holubar M. Oral Fluoroquinolone or Trimethoprim-Sulfamethoxazole vs ß-Lactams as Step-Down Therapy for Enterobacteriaceae Bacteremia: Systematic Review and Meta-analysis. Open Forum Infect Dis [Internet]. 2019;6(10):ofz364. Available in: https://doi.org/10.1093/ofid/ofz364 DOI: 10.1093/ofid/ofz364 PMID 31412127 PMCID PMC6785705

Stewardson AJ, Vervoort J, Adriaenssens N, Coenen S, Godycki-Cwirko M, Kowalczyk A, et al. Effect of outpatient antibiotics for urinary tract infections on antimicrobial resistance among commensal Enterobacteriaceae: a multinational prospective cohort study. Clin Microbiol Infect [Internet]. 2018;24(9):972-9. Available in: https://doi.org/10.1016/j.cmi.2017.12.026 DOI: 10.1016/j.cmi.2017.12.026 PMID 29331548

Malaisri C, Phuphuakrat A, Wibulpolprasert A, Santanirand P, Kiertiburanakul S. A randomized controlled trial of sitafloxacin vs. ertapenem as a switch therapy after treatment for acute pyelonephritis caused by extended-spectrum β-lactamase-producing Escherichia coli: A pilot study. J Infect Chemother [Internet]. 2017;23(8):556-62. Available in: https://doi.org/10.1016/j.jiac.2017.05.005 DOI: 10.1016/j.jiac.2017.05.005 PMID 28587974

Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect [Internet]. 2000;6(9):460-3. Available in: https://doi.org/10.1046/j.1469-0691.2000.00107.x DOI: 10.1046/j.1469-0691.2000.00107.x. PMID 11168179

Chukwudi CU. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob Agents Chemother [Internet]. 2016;60(8):4433-41. Available in: https://doi.org/10.1128/AAC.00594-16 DOI: 10.1128/AAC.00594-16 PMID 27246781 PMCID PMC4958212

Solomkin JS, Sway A, Lawrence K, Olesky M, Izmailyan S, Tsai L. Eravacycline: a new treatment option for complicated intra-abdominal infections in the age of multidrug resistance. Future Microbiol [Internet]. 2019;14(15):1293-308. Available in: https://doi.org/10.2217/fmb-2019-0135 DOI: 10.2217/fmb-2019-0135 PMID 31570004

Sheu C-C, Lin S-Y, Chang Y-T, Lee C-Y, Chen Y-H, Hsueh P-R. Management of infections caused by extended-spectrum β–lactamase-producing Enterobacteriaceae: current evidence and future prospects. Expert Rev Anti Infect Ther [Internet]. 2018;16(3):205-18. Available in: https://doi.org/10.1080/14787210.2018.1436966 DOI: 10.1080/14787210.2018.1436966. PMID 29402125

Solomkin JS, Gardovskis J, Lawrence K, Montravers P, Sway A, Evans D, et al. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin Infect Dis [Internet]. 2019;69(6):921-9. Available in: https://doi.org/10.1093/cid/ciy1029 DOI: 10.1093/cid/ciy1029 PMID 30561562 PMCID PMC6735687

Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum B-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis [Internet]. 2010;10(1):43-50. Available in: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(09)70325-1/fulltext DOI: 10.1016/S1473-3099(09)70325-1 PMID 20129148

Rosso-Fernández C, Sojo-Dorado J, Barriga A, Lavín-Alconero L, Palacios Z, López-Hernández I, et al. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): study protocol for an investigator-driven randomised controlled trial. BMJ Open [Internet]. 2015;5(3):e007363. Available in: http://bmjopen.bmj.com/content/5/3/e007363.abstract DOI: 10.1136/bmjopen-2014-007363 PMID 25829373 PMCID PMC4386243

Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol [Internet]. 2019;51:72-80. Available in: https://www.sciencedirect.com/science/article/pii/S1369527419300190 DOI: 10.1016/j.mib.2019.10.008 PMID 31733401

Carrara E, Pfeffer I, Zusman O, Leibovici L, Paul M. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;51(4):548-53. Available in: https://www.sciencedirect.com/science/article/pii/S0924857917304478 DOI: 10.1016/j.ijantimicag.2017.12.013 PMID 29277528

Dubourg G, Abat C, Raoult D. Why new antibiotics are not obviously useful now. Int J Antimicrob Agents [Internet]. 2017;49(5):549-53. Available in: https://www.sciencedirect.com/science/article/pii/S0924857917300080 DOI: 10.1016/j.ijantimicag.2016.11.015 PMID 28104340

Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules [Internet]. 2019;24(19):3430. Available in: https://www.mdpi.com/1420-3049/24/19/3430 DOI: 10.3390/molecules24193430 PMID 31546630 PMCID PMC6804068

Viale P, Giannella M, Tedeschi S, Lewis R. Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr Opin Pharmacol [Internet]. 2015;24:30-7. Available in: https://www.sciencedirect.com/science/article/pii/S1471489215000788 DOI: 10.1016/j.coph.2015.07.001 PMID 26210268

Singh SB, Young K, Silver LL. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol [Internet]. 2017;133:63-73. Available in: https://www.sciencedirect.com/science/article/pii/S0006295217300187 DOI: 10.1016/j.bcp.2017.01.003 PMID 28087253

Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci [Internet]. 2015;22(1):90-101. Available in: https://www.sciencedirect.com/science/article/pii/S1319562X14000941 DOI: 10.1016/j.sjbs.2014.08.002 PMID 25561890 PMCID PMC4281622

Theuretzbacher U. Antibiotic innovation for future public health needs. Clin Microbiol Infect [Internet]. 2017;23(10):713-7. Available in: https://doi.org/10.1016/j.cmi.2017.06.020 DOI: 10.1016/j.cmi.2017.06.020 PMID 28652114

Oteo J, Belén Aracil M. Caracterización de mecanismos de resistencia por biología molecular: Staphylococcus aureus resistente a meticilina, β-lactamasas de espectro extendido y carbapenemasas. Enferm Infecc Microbiol Clin [Internet]. 2015;33:27-33. Available in: https://www.sciencedirect.com/science/article/pii/S0213005X15300124 DOI: 10.1016/S0213-005X(15)30012-4 PMID 26320993

Pogue JM, Kaye KS, Cohen DA, Marchaim D. Appropriate antimicrobial therapy in the era of multidrug-resistant human pathogens. Clin Microbiol Infect [Internet]. 2015;21(4):302-12. Available in: https://doi.org/10.1016/j.cmi.2014.12.025 DOI: 10.1016/j.cmi.2014.12.025 PMID 25743999

Munita MJ, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr [Internet]. 2016;4(2):4.2.15. Available in: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015 DOI: 10.1128/microbiolspec.VMBF-0016-2015 PMID 27227291 PMCID PMC4888801

Published
2021-10-03
How to Cite
1.
Aziz Delgado CS, Mendoza Gaviria JA. Treatment in Infections by Enterobacterales Producing Extended Spectrum Betalactamase. Systematic Review. Kasmera [Internet]. 2021Oct.3 [cited 2024Jul.6];49(2):e49235056. Available from: https://mail.produccioncientificaluz.org/index.php/kasmera/article/view/35056
Section
Sistematic Review and/or Metaanaliysis