Genotypes for Antimicrobial Resistance and their Phenotypic Expression in Staphylococcus aureus Strains

  • Maribel Castellano González Chair of General Bacteriology, School of Bioanalysis, University of Zulia.
  • Armindo Perozo Mena Chair of Professional Practice of Bacteriology, School of Bioanalysis, University of Zulia. Center of Bacteriological Reference Maracaibo University Hospital. Venezuela.
  • Ana María Parra Center of Bacteriological Reference Maracaibo University Hospital. Venezuela.
  • Messaria Ginestre Pérez Chair of General Bacteriology, School of Bioanalysis, University of Zulia.
  • Gresleida Rincón Villalobos Chair of Clinical Bacteriology, School of Bioanalysis, University of Zulia.
Keywords: S. aureus, resistencia, fenotipos, genotipos

Abstract

Antimicrobial resistance was determined for 106 S. aureus strain isolates from patients treated in the Bacteriological Reference Center at the University Hospital Autonomous Service, Maracaibo, during the first trimester of 2009, using phenotypic and genotypic methods. Culture, isolation and identification were performed following conventional methodology. Phenotypically, 103 strains (97.17%) were resistant to penicillin G; 54 (50.94%) to methicillin; 43.39% to erythromycin (46) and 34.91% (37) to gentamicin. In addition, 13 (12.26%) were intermediate to erythromycin. Genotypically, 90 strains (84.91%) carried the blaZ gene through the polymerase chain reaction (PCR); 53 (50%) carried the mecA gene; only 10 (9.43%) harbored the gene aac(6’)/aph(2’’); the gene ermA was detected in 41 isolates (38.68%) and msrA in 17 (16.04%). The discordant results were: (1) A mecA-negative, but methicillin-resistant strain, which proved blaZ-positive and hyper-productive of B-lactamases; (2) An erythromycin-resistant strain, negative for ermA, B, C and msrA genes, and; (3)Twenty-six gentamicin-resistant strains, negative for aac(6’)/aph(2’’). The phenotypes and genotypes of antimicrobial resistance are related; however, there is a marked variability in the genetic determinants for resistance, which undoubtedly affects phenotypic expression. For oxacillin and, to a lesser degree erythromycin, there is a good match between the resistance phenotypes and genotypes found, noting the greatest discrepancy in the aminoglycosides and penicillin G.

References

(1) Chambers H. The Changing Epidemiology of Staphylococcus aureus? Emerg Infect Dis 2001; 7(2):178-82.

(2) Fluit AC, Visser M, Schmitz F. Molecular Detection of Antimicrobial Resistance. Clin Microbiol Rev 2001; 14(4):836-71.

(3) Martineau F, Picard F, Lansac N, Menard C, Roy P, Ouellette M. et al. Correlation between the Resistance Genotype Determined by Multiplex PCR Assays and the Antibiotic Susceptibility Patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 2000 Feb 1; 44(2):231-8.

(4) Schmitz F, Fluit A, Gondolf, Beyrau R, Lindenlauf E, Verhoef J. et al. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother 1999; 43(2):253-9.

(5) Ardic N, Sareyyupoglu B, Ozyurt M, Haznedaroglu T, Ilga U. Investigation of aminoglycoside modifying enzyme genes in methicillin-resistant staphylococci. Microbiol Res 2006; 161(1):49-54.

(6) Choi S, Kim S, Kim H, Lee D, Choi J, Yoo J. et al. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci 2003; 18(5):631-6.

(7) Ida T, Okamoto R, Shimauchi C, Okubo T, Kuga A, Inoue M. Identification of

Aminoglycoside-Modifying Enzymes by Susceptibility Testing: Epidemiology of Methicillin-Resistant Staphylococcus aureus in Japan. J Clin Microbiol 2001; 39(9):3115-21.

(8) Lewis J, Jorgensen J. Inducible clindamycin resistance in Staphylococci: should clinicians and microbiologists be concerned? Clin Infect Dis 2005; 40(2):280-5.

(9) Merino-Diaz L, Cantos de la CA, Torres-Sanchez M, Heznar-Martin J. Detection of inducible resistance to clindamycin in cutaneous isolates of Staphylococcus spp. by

phenotypic and genotypic methods. Enferm Infecc Microbiol Clin 2007; 25(2):77-81.

(10) Steward C, Raney P, Morrell A, Williams P, McDougal L, Jevitt L. et al. Testing for Induction of Clindamycin Resistance in Erythromycin-Resistant Isolates of Staphylococcus aureus. J Clin Microbiol 2005; 43(4):1716-21.

(11) Daurel C, Huet C, Dhalluin A, Bes M, Etienne J, Leclercq R. Differences in potential for selection of clindamycin-resistant mutants between inducible erm(A) and erm(C) Staphylococcus aureus genes. J Clin Microbiol 2008; 46(2):546-50.

(12) Sekiguchi J, Fujino T, Saruta K, Konosaki H, Nishimura H, Kawana A. et al. Prevalence of erythromycin-, tetracycline-, and aminoglycoside-resistance genes in methicillinresistant Staphylococcus aureus in hospitals in Tokyo and Kumamo. Jpn J Infect Dis 2004; 57:74-7.

(13) Becker K, vonEiff C. Staphylococcus, Micrococcus and other catalase-positive cocci. In: Versalovic J Carrol K, Funke G, Jorgensen J, Landry M, Warnock D, editors. Manual of Clinical Microbiology. Tenth ed. Washington, DC. ASM Press; 2011.

(14) CLSI (Clinical Laboratory Standardization Institute). Performance standards for antimicrobial susceptibility testing. Nineteenth Informational Supplement M100-S19. CLSI, editor. 19th[29], 1-156. 2009. USA.

(15) Martineau F, Picard FJ, Roy PH, Ouellette M, Bergeron MG. Species-specific and

ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol 1998; 36(3):618-23.

(16) Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR Assay for Simultaneous Detection of Nine Clinically Relevant Antibiotic Resistance Genes in Staphylococcus aureus. J Clin Microbiol 2003; 41(9):4089-94.

(17) Felten A, Grandry B, Lagrange PH, Casin I. Evaluation of Three Techniques for Detection of Low-Level Methicillin-Resistant Staphylococcus aureus (MRSA): a Disk Diffusion Method with Cefoxitin and Moxalactam, the Vitek 2 System, and the MRSA Screen Latex Agglutination Test. J Clin Microbiol 2002; 40(8):2766-71.

(18) Yokoyama T, Honda J, Kawayama T, Kajimura K, Oizumi K. Increased incidence of beta-lactamase-plasmid negative, high level methicillin-resistant Staphylococcus aureus (MRSA). Kurume Med J 1996; 43(3):199-206.

(19) Kaase M, Lenga S, Friedrich S, Szabados F, Sakinc T, Kleine B, et al. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clin Microbiol Infect 2008; 14(6):614-6.

(20) Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J. Distribution of Genes Encoding Resistance to Macrolides, Lincosamides, and Streptogramins among Staphylococci. Antimicrob Agents Chemother 1999; 43(5):1062-6.

(21) Hamilton-Miller J, Shah S. Patterns of phenotypic resistance to the macrolidelincosamide- ketolide-streptogramin group of antibiotics in staphylococci. J Antimicrob Chemother 2000; 46(6):941-9.

(22) Ghebremedhin B, Olugbosi M, Raji A, Layer F, Bakare R, Konig B, et al. Emergence of a Community-Associated Methicillin-Resistant Staphylococcus aureus Strain with a Unique Resistance Profile in Southwest Nigeria. J Clin Microbiol 2009; 47(9):2975-80.

Published
2012-07-01
How to Cite
1.
Castellano González M, Perozo Mena A, Parra AM, Ginestre Pérez M, Rincón Villalobos G. Genotypes for Antimicrobial Resistance and their Phenotypic Expression in Staphylococcus aureus Strains. Kasmera [Internet]. 2012Jul.1 [cited 2025Apr.5];40(2):146-59. Available from: https://mail.produccioncientificaluz.org/index.php/kasmera/article/view/4939
Section
Original Articles