Staphylococcus aureus isolated in the dental area. Resistance and virulence genes

Keywords: Staphylococcus aureus, mobile phones, dental equipment, virulence factors

Abstract

Staphylococcus aureus is a recognized and adaptable human pathogen, the pathogenic capacity with its virulence genes and its propensity to acquire resistance to antimicrobials, justify the evaluation of the presence of this microorganism in handpieces and mobile phone screens. The objective of this research was to analyze the mecA resistance gene and the virulence genes tst and lukS-FPV in strains of S. aureus isolated in handpieces and mobile phone screens of dental offices in the city of Cuenca-Ecuador using molecular techniques. The methodology used was cross-sectional, descriptive and observational. The sample consisted of 5 strains of Staphylococcus aureus (3 from mobile phone screens and 2 from high-speed parts) in which the aforementioned genes were analyzed by PCR. Results, 40% of the strains presented the mecA gene, the tst gene was identified in 80% of the strains, while no strain had the lukS-F PV gene. It is concluded that resistant and virulent strains of S. aureus are found on mobile phone screens and high-speed parts of dental offices. It is advisable to maintain sterilization and hygiene measures for these dental equipment.

Downloads

Download data is not yet available.

Author Biography

Paola Patricia Orellana Bravo, Universidad Católica de Cuenca

Unidad Académica de Salud y Bienestar, Carrera de Odontología, Laboratorio de Genética y Biología Molecular del Centro de Investigación y Transferencia de Tecnología. Universidad Católica de Cuenca, Cuenca-Ecuador


References

Abbas M, Al-Yasseen A, Alhamadi W. (2017). Prevalence of Staphylococcus aureus among gingivitis in patient with orthodontic wires in Kufa City/ Iraq. Pak J Biotechnol; 14 (1):91-96.

Abudu L, Blair I, Fraise A. (2001). Methicillin resistant Staphylococcus aureus (MRSA): a community-based prevalence survey. Epidemiol Infect; 126: 351-356.

Al-Abdli NE, Baiu SH. 2016. Isolation of MRSA Strains from Hospital Environment in Benghazi City, Libya. Am J Infect Dis Microbiol [Internet]; 4(2):41-3

Andrade C, Orellana P. (2019). Frecuencia y susceptibilidad a penicilina y meticilina de aislamientos ambientales de Staphylococcus aureus en un hospital de Cuenca. Kasmera; 47(2):123-130.

Bertelloni F, Fratini F, Ebani V, Galiero A, y col. (2015). Detection of genes encoding for enterotoxins, TSST-1, and biofilm production in coagulase-negative Staphylococci from bovine bulk tank milk. Dairy Science & Technology; 95:341–352.

Bodena D, Teklemariam Z, Balakrishnan S, Tesfa T. (2019). Bacterial contamination of mobile phones of health professionals in Eastern Ethiopia: antimicrobial susceptibility and associated factors. Trop Med Health; 47: 15.

Bueris V, Pimenta F, Yoko Ito I, Marin J. (2005). Oral incidence of Staphylococcus aureus and antimicrobials agents resistance. Braz J Oral Sci; 4(12): 676-679.

Buonavoglia A, Latronico F, Greco M, D’Abramo M, Marinaro M, Mangini F, Corrente M. (2010). Methicillin-resistant staphylococci carriage in the oral cavity: a study conducted in Bari (Italy). Oral Dis 2010; 16: 465-468.

Castellano M, Perozo A. Mecanismos de resistencia a antibióticos B-lactámicos en Staphylococcus aureus. Kasmera; 38(1): 18-35.

Cataldo K, Jacquett N, Fariña N, Pereira A, Rodríguez F, Guillen R, Russomando G. (2014). Portación de Staphylococcus aureus multiresistentes a antimicrobianos en cavidad bucal de niños que concurren para un tratamiento en una clínica odontológica, Paraguay. Pediatr (Asunción); 41(3):201-207.

Chávez-Vivas M, Martínez A del C, Esparza-Mantilla M. (2017) Caracterización de Staphylococcus aureus obtenido del ambiente hospitalario y del personal de salud en un hospital de la ciudad de Cali. Biosalud [Internet];16(2):22-33.

Corredor LF and Santacruz JJ. (2011). Detección de genes de toxinas pirogénicas y toxinas exfoliativas en aislamientos clínicos de Staphylococcus aureus en Colombia. Investig. Andina; 14(25):577–87.

Cuesta A, Jewtuchowicz V, Brusca M, Nastri M, Rosa A. (2010). Prevalence of Staphylococcus spp and Candida spp in the oral cavity and periodontal pockets of periodontal disease patients. Acta Odontol Latinoam; 23:20-26.

Ga K, Chong L. (2015) Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis. J J Periodont Implant Sci; 45:223-228.

Garza R, Zúñiga O, Perea L. (2013). La importancia clínica actual de Staphylococcus aureus en el ambiente intrahospitalario. Educ quím; 24(1):8-13.

González YM, Florez G, Moncayo J and Santacruz J. y col. (2018). Detección y expresión de supe- rantígenos y de resistencia antimicrobiana en aislamientos obtenidos de mujeres portadoras de Staphylococcus aureus que cuidan y alimentan niños. Biomédica; 38(1): 96–104.

Hussain F, Boyle-Vavra S and Daum R. (2001) Community-acquired methicillin-resistant Staphylococcus aureus colonization in healthy children attending an outpatient pediatric clinic. Pediatr Infect Dis J; 20: 763-767.

Jackson M, Bagg J, Kennedy H, Michie J. (2000). Staphylococci in the oral flora of healthy children and those receiving treatment for malignant disease. Microbiol Ecol Health Dis; 12: 60-64.

Jarraud S, Mougel C, Thioulouse J. y col. (2002). Relationships between Staphylococcus aureus Genetic Background, Virulence Factors, agr Groups (Alleles), and Human Disease. Infection and Immunity; 631-641.

Lam O, McGrath C, Bandara H, Li L, Samaranayake L. (2012). Oral health promotion interventions on oral reservoirs of Staphylococcus aureus: a systematic review. Oral Dis; 18:244-254.

Lee A, De Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A y col. (2018). Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers; 4(18033): 1-23.

Lina G, Piémont Y, Godail-Gamot F, Bes M. y col. (1999). Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis; 29(5):1128-32.

McCormack M, Smith A, Akram A, Jackson M, Robertson D, Edwards G. (2015). Staphylococcus aureus and the oral cavity: An overlooked source of carriage and infection?. Am J Infect Control; 43: 35-37.

Mukhiya R, Shrestha A, Rai S, Panta K, Singh RN, Rai G, y col. (2013). Prevalence of Methicillin-Resistant Staphylococcus aureus in Hospitals of Kathmandu Valley. Nepal J Sci Technol [Internet];13(2):185-90.

Nilsson P, Ripa T. (2006). Staphylococcus aureus throat colonization is more frequent than colonization in the anterior nares. J Clin Microbiol; 44: 3334–3339.

Noumi E, Merghni A, Alreshidi M, Del Campo R, Adnan M, Haddad O y col. (2020). Phenotypic and Genotypic Characterization with MALDI-TOF- MS Based Identification of Staphylococcus spp. Isolated from Mobile Phones with their Antibiotic Susceptibility, Biofilm Formation, and Adhesion Properties. Int. J. Environ. Res. Public Health; 17(11): 3761.

Ohara‐Nemoto Y, Haraga H, Kimura S, Nemoto T. (2008). Occurrence of staphylococci in the oral cavities of healthy adults and nasal oral trafficking of the bacteria. J Med Microbiol; 57(1):95-99.

Pereira C, Araújo E, Pereira J, Costa K. (2011). Papel de los Staphylococcus spp. en la mucositis oral: revisión de la literatura. Acta Odontol Venez; 49(3):1-6.

Petti S, Boss M, Messano G. Protano A & Polimeni A. (2014). High salivary Staphylococcus aureus carriage rate among healthy paedodontic patients. The New Microbiol; 37(1):91-96.

Prevost G, Cribier B, Couppie P, Petiau P. y col. (1995). Panton-Valentine Leucocidin and gammahemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect Immun. 63(10):4121–9.

Rodríguez E, Jiménez J. (2015). Factores relacionados con la colonización por Staphylococcus aureus. Iatreia; 28 (1): 66-77.

Romero AS, Castellano M, Ginestre M and Perozo A. (2016). Leucocidina de Panton Valentine en cepas SAMR aisladas de pacientes del Hospital Universitario de Maracaibo. Kasmera; 44(2): 111-120.

Romero B, y col. (2017). Comparación bacteriana de 30 piezas de alta velocidad antes y después de ser utilizadas en la Facultad de Odontología Región Veracruz. Revista ADM; 74 (4): 185-188.

Seng R, Kitti T, Thummeepak R, Kongthai P, Leungtongkam U, Wannalerdsakun S y col. (2017). Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS One;12(8).

Sila J, Sauer P and Kolar M. (2009). Comparison of the prevalence of genes coding for enterotoxins, exfoliatins, Panton-Valentine leukocidin and TSST-1 between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus at the university hospital in Olomouc. Biomed Pap Med; 153(3):215–218.

Smith A, Jackson M, Bagg J. (2001). The Ecology of Staphylococcus species in the oral cavity. J Med Microbiol; 50:940-646.

Suzuki J, Yoshimura G, Kadomoto N, Kuramoto M, and Kozai K. (2007). Long-term periodical isolation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) from Japanese children’s oral cavities. Pediatric Dent J; 17(2):127-130.

Vieira A, Hiller N, Powell E, Hak‐Jin L, Spirk T, Modesto A, Kreft R. (2019). Profiling microorganisms in whole saliva of children with and without dental caries. Clin Exp Dent Res;1-9.

Waleed AA. (2019). Detection of the Panton-Valentine Leukocidin Gene in Swedish Isolates of Methicillin-Resistant Staphylococcus aureus using a Multiplex PCR Assay. Journal of Bacteriology and Parasitology. J Bacteriol Parasitol; 153(3): 215-8.

Wang Y, Liu S, Li B, Jiang Y, Zhou X, Chen J, Li M, Ren B, Peng X, Zhou X, Cheng L. (2019). Staphylococcus aureus induces COX-2-dependent proliferation and malignant transformation in oral keratinocytes. J Oral Microbiol; 11:1-12.
Published
2021-12-21
How to Cite
Orellana Bravo, P. P. (2021). Staphylococcus aureus isolated in the dental area. Resistance and virulence genes. REDIELUZ, 11(2), 131-138. https://doi.org/10.5281/zenodo.6812286
Section
Ciencias Exactas, Naturales y Agropecuarias