ARTIFICIAL INTELLIGENCE AND MEDICAL SCIENCE EDUCATION

  • Angel Jose Chu Lee Universidad de Machala, Facultad de Ciencias de la Salud, Ecuador
  • Roberto Eduardo Aguirre Fernández Universidad de Machala, Facultad de Ciencias de la Salud, Ecuador
  • Carina Alexandra Serpa Andrade Universidad de Machala, Facultad de Ciencias de la Salud, Ecuador
  • Karen Anahí Romero Freire Universidad de Machala, Facultad de Ciencias de la Salud, Ecuador
  • Gabriele Oralia Ortiz Loor Universidad de Machala, Facultad de Ciencias de la Salud, Ecuador
Keywords: Artificial intelligence, medical education, estudiante de medicina, innovative education

Abstract

Artificial intelligence (AI) is causing a revolution in healthcare and medical education. In the healthcare field, AI is presented as a powerful tool to improve the quality and efficiency of healthcare services. It helps alleviate the workload of healthcare professionals and streamlines diagnostic processes. It also personalizes the learning experience for medical students, tailoring content to their knowledge and skill levels, and facilitating access to up-to-date material. However, the integration of AI into medical education poses ethical challenges. The authenticity of information and the confidentiality of patient data must be guaranteed. Curricula and educator roles also need to be adjusted as AI is incorporated into the medical education process. Despite resistance in some quarters, organizations such as the General Medical Council in the UK are driving its adoption because of its transformative potential. In addition, data science plays a crucial role in the medical field, facilitating decision-making and electronic medical record management. Examples of notable es include Microsoft's Project Hanover, which uses machine learning to combat cancer, and the ethical application of AI in structuring medical content.

Downloads

Download data is not yet available.

References

Barrios, I. (2023). Inteligencia artificial y redacción científica: aspectos éticos en el uso de las nuevas tecnologías. Medicina clínica y social, 7(2), 46-47.

de la Cruz Figueroa, L. F., Fernández Rodríguez, R., & González Rangel, M. Á. (2018). Hacia herramientas de inteligencia artificial en la enseñanza médica. Enfoque preliminar. Revista Cubana de Informática Médica, 10(1), 68-75.

Del Río Solá, M. L., Santos, J. M. L., & Puerta, C. V. (2018). La inteligencia artificial en el ámbito médico. Revista Española de Investigaciones Quirúrgicas, 21(3), 113-116.

Joison, A. N., Barcudi, R. J., Majul, E. A., Ruffino, S. A., De Mateo Rey, J. J., Joison, A. M., & Baiardi, G. (2021). La inteligencia artificial en la educación médica y la predicción en salud. Methodo Investigación Aplicada a las Ciencias Biológicas, 6(1).

Linn, A. (2022). How Microsoft is helping to ‘solve‘ cancer. Microsoft.com. Recuperado el 13 de septiembre de 2023, de https://news.microsoft.com/stories/computingcancer/

Martínez, J. Á. M. (2023). Inteligencia artificial generativa y educación médica. Educación médica, 24(4), 1

Pimienta, S. X., & Mosquera-Martínez, M. L. (2021). Consideraciones curriculares, tecnológicas y pedagógicas para la transición al nuevo modelo educativo en el campo de la salud soportado por inteligencia artificial (IA). Medicina, 43(4), 540-554.

Pinto dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., ... & Baeßler, B. (2019). Medical students' attitude towards artificial intelligence: a multicentre survey. European radiology, 29, 1640-1646.

Vidal Ledo, M. J., Madruga González, A., & Valdés Santiago, D. (2019). Inteligencia artificial en la docencia médica. Educación Médica Superior, 33(3).

Weidener, L., & Fischer, M. (2023). Artificial Intelligence Teaching as Part of Medical Education: Qualitative Analysis of Expert Interviews. JMIR Medical Education, 9(1), e46428.
Published
2024-08-04
How to Cite
Chu Lee, A. J., Aguirre Fernández, R. E., Serpa Andrade, C. A., Romero Freire, K. A., & Ortiz Loor, G. O. (2024). ARTIFICIAL INTELLIGENCE AND MEDICAL SCIENCE EDUCATION. REDIELUZ, 14(1), 85 - 89. https://doi.org/10.5281/zenodo.13205034