Microabrasive Wear Test Procedure for Characterization of High Hardness Ferrous Materials
Abstract
The ball cratering microabrasive wear test is a method whose feasibility in wear resistance characterization of metallic materials has been demonstrated in numerous investigations; however, there is still no standard that establishes the procedure for its application. This leads to the need the need to establish a test procedure suitable for specific applications. In the present work a microabrasive test procedure was obtained aimed at the characterization of high alloy and hardness ferrous materials, validated by the quality of wear mark, the behavior of the crater diameter with respect to the test time and the dispersion of the measurement results. It was demonstrated that, by using alumina as abrasive, with concentration of 10 g per 100 ml of water, dripping frequency of 1 drops/5 sec, test force of 0.27 N, shaft rotation speed of 80 rpm and test time of 10 min, reliable measurements are obtained in a permanent wear regime. It was also found that there is a correspondence between the hardness and the microstructure of the material with the dispersion of the results and the average size of the wear track.
Downloads
References
Adachi, K., Hutchings, I. M. (2005). Sensitivity of wear rates in the micro-scale abrasion test to test conditions and material hardness. Wear, 258, 318-321.
ASTM E384. (2017). Standard test method for microindentation hardness of materials. West Conshohocken: American Society of Testing Materials (ASTM).
ASTM E3. (2001). Standard guide for preparation of metallographic specimens. West Conshohocken: American Society of Testing Materials (ASTM).
ASTM-E407. (2007). Standard practice for microetching metals and alloys. West Conshohocken: American Society of Testing Materials (ASTM).
ASTM A532. (2019). Standard specification for abrasion-resistant cast irons. West Conshohocken: American Society of Testing Materials (ASTM).
ASTM G40. (2002). Standard terminology relating to wear and erosion. West Conshohocken: American Society of Testing Materials (ASTM).
ASTM G65. (2021). Standard test method for measuring abrasion using the dry sand/rubber wheel apparatus. West Conshohocken: American Society of Testing Materials (ASTM).
Badisch, E., Mitterer, C. (2003). Abrasive wear of high-speed steels: influence of abrasive particles and primary carbides on wear resistance. Tribology International, 36, 765-770.
Bethke, R., Schiffmann, K. (2001). Ball cratering wear test: review of the state of the art. Braunschweig: Fraunhofer Institut fur Schicht und Oberflachentechnik.
BS EN 1071-6. (2007). Advanced technical ceramics. Methods of test for ceramic coatings. Determination of the abrasion resistance of coatings by a micro-abrasion wear test. London: British Standards Institution (BSI).
Cardoso, P. H. S., Israel, C. L., Strohaecker, T. R. (2014). Abrasive wear in austempered ductile irons: a comparison with white cast irons. Wear, 313, 29-33.
Chatterjee, S., Pal, T. K. (2003). Wear behavior of hardfacing deposits on cast iron. Wear, 255, 417-425.
Coronado, J. J., Caicedo, H. F., Gómez, A. L. (2009). The effects of welding processes on abrasive wear resistance for hardfacing deposits. Tribology International, 42, 745-749.
Cozza, R. C. (2006). Estudo do comportamento do coeficiente de desgaste e dos modos de desgaste abrasivo em ensaios de desgaste micro-abrasivo. Tesis de maestría. São Paulo: Universidade de São Paulo.
Cozza, R. C. (2013a). A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests. Surface & Coatings Technology, 215, 224-233.
Cozza, R. C. (2013b). Análise sobre a reprodutibilidade de resultados e fragmentação de partículas abrasivas em ensaios ball-cratering. Tecnologia em Metalurgia, Materiais e Mineração, 10(2), 103-111.
Cozza, R. C., de Mello, J. D. B., Tanaka, D. K., Souza, R. M. (2007). Relationship between test severity and wear mode transition in micro-abrasive wear tests. Wear, 263, 111-116.
Cozza, R. C., Tanaka, D. K., Souza, R. M. (2009). Friction coefficient and abrasive wear modes in ball-cratering tests conducted at constant normal force and constant pressure -Preliminary results. Wear, 267, 61-70.
Cozza, R. C., Martins Souza, R., Katsuki Tanaka, D. (2005). Wear mode transition during the micro-scale abrasion of WC-Co P20 and M2 tool steel. 18th International Congress of Mechanical. Ouro Preto: COBEM Ed. ABCM, 6-11.
De Mello, J. D., Polycarpou, A. (2010). Abrasive wear mechanisms of multi-components ferrous alloys abraded by soft, fine abrasive particles. Wear, 269, 911-920.
Dieter, G. E. (Ed.). (1997) Materials, selection and sesign. ASM Handbook. Vol. 20. Ohio: ASM International.
Gant, A. J., Gee, M. G. (2011). A review of micro-scale abrasion testing. Journal of Physics D: Applied Physics, 44(7), 7-30.
Gee, M. G., Gant, A., Hutchings, I., Bethke, R., Schiffman, K., Van Acker, K., Poulat, S., Gachon, Y., Von, S. J. (2003). Progress towards standardisation of ball cratering. Wear, 255, 1-13.
GOST 5950. (2000). Tool alloy steel bars, strips and coils. General specifications. Moscow: Gosudarstvenny Standart (GOST).
ISO 26424. (2008). Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of the abrasion resistance of coatings by a micro-scale abrasion test. 1st edition. Geneva: International Standard Organization (ISO).
Kuhn, H., Medlin, D. (Eds.). (2000). Mechanical testing and evaluation. ASM Handbook. Vol. 08. Ohio: ASM International.
León Sevilla, L. M., Gutiérrez Pineda, J. C., Toro, A. (2004). Relación microestructura resistencia al desgaste de recubrimientos duros ricos en cromo y tungsteno aplicados por soldadura eléctrica (SMAW). Dyna, 71(144), 165-171.
López Escobar, I. P., Ortiz Méndez, T. M., Cruz Crespo, A. (2022). Desarrollo de un equipo de ensayo microabrasivo con esfera rotativa libre para la evaluación de depósitos de recargue. Revista Centro Azúcar, 49(4), 80-90.
Mendez, P. F., Barnes, N., Bell, K., Borle, S. D., Gajapathi, S. S., Guest, S. D., Izadi, H., Gol, A. K, Wood, G. (2014). Welding processes for wear resistant overlays. Journal of Manufacturing Processes, 16, 4-25.
Ortiz Méndez, T., Cruz Crespo, A., Rodríguez, M. (2019). Efecto del número de pasadas sobre el desempeño al desgaste micro-abrasivo de depósitos de recargue obtenidos con un electrodo tubular revestido experimental. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 42(1), 19-26.
Rodríguez Torres, Y. (2019) Fabricación de un equipo de ensayo de desgaste microabrasivo con esfera rotativa. Tesis de grado. Santa Clara: Universidad Central “Marta Abreu” de las Villas.
Silva, F. J. G., Casais, R. B., Martinho, R. P., Baptista, A. P. M. (2011). Role of abrasive material on micro-abrasion wear tests. Wear, 271, 2632-2639.
Singla, Y. K., Chhibber, R., Arora, N. (2017). On the microstructure and wear behavior of Fe–xCr–4Mn–3C hardfacing alloys. Transactions of the Indian Institute of Metals, 70(6), 1555-1561.
Stachowiak, G. B., Stachowiak, G. W., Brandt, J. M. (2006). Ball-cratering abrasion tests with large abrasive particles. Tribology International, 39, 1-11.
Stachowiak, G. B., Stachowiak, G. W., Celliers, O. (2005). Ball-cratering abrasion tests of high-Cr white cast irons. Tribology International, 38, 1076-1087.
Trezona, R. I., Hutchings, I. M. (1999). Three-body abrasive wear testing of soft materials. Wear, 233-235, 209-221.
Turenne, S., Lavallée, F., Masounave, J. (1989). Matrix microstructure effect on the abrasion wear resistance of high-chromium white cast iron. Journal of Materials Science, 24, 3021-3028.
Vander Voort, G. F. (Ed.). (2004). Metallography and microstructures. ASM Handbook. Vol. 9. 10th Edition. Ohio: ASM International.
Wang, Q., Li, X. (2010). Effects of Nb, V, and W on microstructure and abrasion resistance of Fe-Cr-C hardfacing alloys. Welding Journal, 89, 133s-139s.

Copyright (c) 2024 Valentina Millano González

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0