Evaluación de electrodos de carbono vítreo modificados con bimetálicos Ag-Hg y Ag-Bi en la detección de Pb(II) en agua potable. / Evaluation of glassy carbon modified electrodes with Ag-Hg and Ag-Bi bi-metallics in Pb(II) detection in tap water.
Abstract
Resumen
En este trabajo se reporta la modificación de un electrodo de carbono vítreo (CV) con nanopartículas bimetálicas platamercurio (Ag-Hg) y plata-bismuto (Ag-Bi) y su evaluación en la cuantificación del Pb(II) en muestras de agua potable. La modificación de la superficie electródica con bimetálicos generó un aumento en el sobre-potencial de evolución de hidrógeno, lo que favorece la detección de metálicos a altos potenciales de reducción. Los bimetálicos fueron preparados de forma nanoestructurada mediante la asistencia de una plantilla de película de nafion. Para la detección de Pb(II) se utilizó la técnica de voltametría de redisolución anódica, lográndose límites de detección (LD) de 0,66 μg L-1 sobre el electrodo nano-estructurado AgBiNpNf/CV y 0,24 μg L-1 sobre el electrodo AgHgNpNf/CV. Los electrodos fueron evaluados en la cuantificación de Pb(II) en muestras de agua potable provenientes de la ciudad de Quito-Ecuador. Los porcentajes de recuperación (%R) en cinco determinaciones se encontraron entre 96% y 98%, indicando buena exactitud en el análisis de la muestra.
Abstract
In this work we report the modification of a vitreous carbon electrode with silver-mercury (Ag-Hg) and silver-bismuth (AgBi) bimetallic nanoparticles and its evaluation in the quantification of Pb(II) in samples of tap water. The modification of the electrode surface with bimetallic generates an increase in the potential of the evolution of hydrogen, which favors the detection of metals at high reduction potentials. The bimetallic nanoparticles were prepared in a nano-structured way by the assistance of a Nafion film template. Sensitivity tests for the AgBiNpNf/GC modified electrode produced detection limit (DL), based on the variability of a blank solution (3s criterion), of 0.66 μg L-1 while for the AgHgNpNf/GC electrode DL was 0.24 μg L-1. The proposed method was also applied to the determination of Pb(II) in tap water samples from Quito-Ecuador. Recoveries of five replicate determinations of these samples were in the range of 96–98% thus showing acceptable accuracy in the analysis of real samples.
Downloads
References
Water, S., & World Health Organization. Guidelines
for drinking-water quality [electronic resource]:
incorporating first addendum. Vol. 1, (2006)
Recommendations.
Barón-Jaimez J., Joya M. R.,Barba-Ortega J.:“Anodic
stripping voltammetry–ASV for determination of
heavy metals”. InJournal of Physics: Conference
Series, Vol. 466, No. 1 (2013).
Pujol L., Evrard D., Groenen-Serrano K., Freyssinier
M., Ruffien-Cizsak A., Gros P.:“Electrochemical
sensors and devices for heavy metals assay in
water: the French groups’ contribution”. Frontiers in
chemistry, Vol. 2, No.19 (2014).
Saturno J., Valera D., Carrero H.,Fernández M.:
“Electroanalytical detection of Pb, Cd and traces of Cr
at micro/nano-structured bismuth film electrodes”.
Sensors and Actuators B: Chemical. Vol. 159, No. 1
(2011).
Compton, R. G., Laborda, E., & Ward, K. R. (2013).
Understanding voltammetry: simulation of
electrode processes. World Scientific.
Skoog, D. A., West, D. M., & Holler, F. J. (1997).
Fundamentos de química analítica (Vol. 2). Reverté.
Economou A., Fielden P. R.:”Mercury film electrodes:
developments, trends and potentialities for
electroanalysis”. Analyst, Vol. 128, No.3 (2003).
Legeai S.,Vittori O.:”A Cu/Nafion/Bi electrode for
on-site monitoring of trace heavy metals in natural
waters using anodic stripping voltammetry: an
alternative to mercury-based electrodes”. Anal.
Chimica Acta, Vol. 560, No.1 (2006).
Wang, J. (2005). Stripping analysis at bismuth
electrodes: a review. Electroanalysis, Vol. 17(15‐16),
-1346.
Omanović D., Garnier C., Gibbon–Walsh,K.,
Pižeta, I.:“Electroanalysis in environmental
monitoring: Tracking trace metals—A mini review”.
Electrochemistry Communications, Vol. 61, (2015).
Mikkelsen., Schrøder K. H.:“Amalgam electrodes
for electroanalysis”. Electroanalysis, Vol. 15, No.8
(2003).
Skogvold S. M., Mikkelsen Ø., Billon G., Garnier C.,
Lesven L., Barthe J. F.:“Electrochemical properties
of silver–copper alloy microelectrodes for use in
voltammetric field apparatus”. Anal. Bioanal. Chem.,
Vol. 384, No. 7-8 (2006).
Skogvold S. M., Mikkelsen Ø., Schrøder K.
H.:“Electrochemical Properties and Application of
Mixed Silver‐Bismuth Electrodes”. Electroanalysis,
Vol. 17, No. 21 (2005).
Hoyer B., Jensen N.:“Phase-inversion cellulose
acetate membranes for suppression of protein
interferences in anodic stripping voltammetry”.
Talanta, Vol. 42, No.5 (1995).
Hoyer B., Florence T. M., Batley G. E.:“Application of
polymer-coated glassy carbon electrodes in anodic
stripping voltammetry”. Anal. Chem, Vol.59, No. 13
(1987).
Dam M. E., Schrøder K. H.:“Mercury film electrodes
coated with negatively charged polymer films
in speciation studies of trace amounts of lead”.
Electroanalysis, Vol. 8, No.11 (1996).
Antonietta Baldo M.: “Determination of lead and
copper in wine by anodic stripping voltammetry
with mercury microelectrodes: assessment of the
influence of sample pretreatment procedures”.
Analyst, Vol.122, No. 1 (1997).
Mauritz K. A., Moore R. B. “State of understanding of
Nafion “. ChemicalReviews, Vol. 104, No.10 (2004).
Jaenicke S., Sabarathinam R. M., Fleet B.,
Gunasingham H.:“Determination of lead in blood
by hydrodynamic voltammetry in a flow injection
system with wall-jet detector”. Talanta, Vol. 45, No.4
(1998).
Vidal J. C., Viñao R. B., Castillo J. R.: “Binding capacity
of casein to lead and voltammetric speciation
of lead in milk with a nafion coated electrode”.
Electroanalysis, Vol. 4, No. 6 (1992).
Kleijn, S. E., Lai, S., Koper, M., & Unwin, P. R.:
Electrochemistry of nanoparticles. Angewandte
Chemie International Edition, 53(14), (2014). 3558-
Bisquert, J.: Sistemas electroquímicos y
nanotecnología para el almacenamiento de energía
limpia. línea]. (2005). Available: http://www.
enerize. com/super Cap. php.
Abd El Rehim, S. S., Hassan, H. H., Ibrahim, M. A., & Amin,
M. A.: Electrochemical behaviour of a silver electrode
in NaOH solutions. MonatsheftefürChemie/
ChemicalMonthly, Vol. 129(11), (1998) 1103-1117.
Teijelo M.L., Vilche J.R., Arvia A.J.: “Complex
potentiodynamic response of silverin alkaline
Electrolytes in the potential range of the Ag/
Ag2O Couple”. J. Electroanal. Chem. Interfacial
Electrochem., Vol. 131, (1982).
Vivier V., Cachet-Vivie C., Mezaille S., Wu B.,
Cha C., NedelecJ.-Y., FedoroffM., Michel D., Yu L.:
“Electrochemical Study of Bi2O3 and Bi2O2CO3
by Means of a Cavity Microelectrode. I. Observed
Phenomena and Direct Analysis of Results”. J.
Electrochem.Soc.,Vol. 11, No. 147 (2000).
Zhao S. X., Zhang L. J., Wang Y. X.:“Enhanced
performance of a Nafion membrane through
ionomer self-organization in the casting solution”. J.
of PowerSources, Vol. 233, (2013).
Kefala G., Economou A., Voulgaropoulos A.: “A study
of Nafion-coated bismuth-film electrodes for the
determination of trace metals by anodic stripping voltammetry”. Analyst, Vol. 129, No.11 (2004)
agner D.: “Potentiometric stripping analysis. A
review”. Analyst, Vol.107, No.1275 (1982).
Renteria, B., & Zepeda, F.: Estudio prelimar [ie
preliminar] de un método voltamperométrico para
la determinación de plomo en agua potable 2008.
(Doctoral dissertation).
Xiao L., Xu H., Zhou S., Song T., Wang H., Li S.,Yuan Q.:“Simultaneous detection of Cd (II) and Pb(II) by
differential pulse anodic stripping voltammetry
at a nitrogendoped microporous carbon/Nafion/
bismuth-filmelectrode”.Electrochimica Acta,Vol.143,
(2014).
Eurachem, G.: Métodos analíticos adecuados a su
propósito. Guía de laboratorio para la validación de
métodos y temas relacionados, (2005). Copyright
LGC (Teddington) Ltd.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0