A Prediction Model for External Corrosion Rate for Buried Pipelines in Clay Soil
Abstract
Many studies have shown the need in the Venezuelan oil industry to implement viable alternatives in the field of pipeline integrity management. Thus, the aim of this work is to propose a prediction model for the external corrosion rate of buried transmission pipelines in a crude oil production field with clay soils, located in the west of Zulia State in Venezuela. After the collection, revision and classification of soil and operating parameter data in the field, a definition of input and output variables was carried out, used to generate 2 models, one regression type and the other classification type. For the neural network model, a low regression fit (R2) of 6.62 % and an RMSE of 2.13 were obtained, indicators of low model efficiency due to the restrictions of the data provided and sample size. On the contrary, for the decision tree classification model, an accuracy of 98.14 % was obtained, when classifying the corrosion rate in severity ranges. This classification tree model will serve as a starting point for subsequent research to delve deeper into the area.
Downloads
References
API 1160. (2019). Managing system integrity for hazardous liquid pipelines. Washington: American Petroleum Institute (API).
ASME B31.8S. (2020). Managing system integrity of gas pipelines. New York: The American Society of Mechanical Engineer (ASME).
Calderón, J. A., Delgado, J., Peñaranda, S. A. (2005). Análisis estadístico de los factores que intervienen en la corrosión de tuberías enterradas. Revista de la Facultad de Ingeniería Universidad de Antioquia, 34, 23-34.
De Arriba, L., Rodríguez, V., Villanueva, J., Ortega, F. (2020). Design of predictive models to estimate corrosion in buried steel structures. Sustainability, 12(23), 9879.
Ezuber, H., Alshater, A., Hossain, Z., El-Basir, A. (2020). Impact of soil characteristics and moisture content on the corrosion of underground steel pipelines. Arabian Journal for Science and Engineering, 46, 6177-6188.
Kiani-Khouzani, M., Bahrami, A., Hosseini-Abari, A., Khandouzi, M., Taheri, P. (2019). Microbiologically influenced corrosion of a pipeline in a petrochemical plant. Metals, 9(4), 459.
Kim, C., Chen, L., Wang, H., Castaneda, H. (2021). Global and local parameters for characterizing and modeling external corrosion in underground coated steel pipelines: a review of critical factors. Journal of Pipeline Science and Engineering, 1(1), 17-35.
Li, Y., He, X., Shuai, J. (2022). Risk analysis and maintenance decision making of natural gas pipelines with external corrosion based on Bayesian network. Petroleum Science, 19, 1250-1261.
Seghier, M. E. A. B., Keshtegar, B., Taleb-Berrouane, M., Abbassi, R., Nguyen-Thoi, T. (2021). Advanced intelligence frameworks for predicting maximum pitting corrosion depth in oil and gas pipelines. Process Safety and Environmental Protection, 147, 818-833.
Song, Y., Wang, Q., Zhang, X., Dong, L., Bai, S., Zeng, D., Zhang, Z., Zhang, H., Xi, Y. (2023). Interpretable machine learning for maximum corrosion depth and influence factor analysis. NPJ Mater Degradation, 7(1), 9.
UNIR. (2021). Árboles de decisión: en qué consisten y aplicación en Big Data [en línea] disponible en: https://www.unir.net/ingenieria/revista/arboles-de-decision [consulta: 7 julio 2023].
Xu, M., Liang, H., Liu, Y., Asselin, E. (2021). Predicting the external corrosion rate of X60 pipeline steel: a mathematical model. Metals, 1(4), 583.
Zakikhani, K., Nasiri, F., Zayed, T. (2021). A failure prediction model for corrosion in gas transmission pipelines. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 235(3), 374-390.
Copyright (c) 2023 José Faría González, Lisseth Ocando
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0