A Prediction Model for External Corrosion Rate for Buried Pipelines in Clay Soil

  • José Faría González Centro de Estudios de Corrosión, Facultad de Ingeniería, Universidad del Zulia, Estado Zulia, Maracaibo 4001, Venezuela
  • Lisseth Ocando Centro de Estudios de Corrosión, Facultad de Ingeniería, Universidad del Zulia, Estado Zulia, Maracaibo 4001, Venezuela https://orcid.org/0009-0002-7452-2605
Keywords: classification tree, external corrosion, neural networks, pipelines, prediction models

Abstract

Many studies have shown the need in the Venezuelan oil industry to implement viable alternatives in the field of pipeline integrity management. Thus, the aim of this work is to propose a prediction model for the external corrosion rate of buried transmission pipelines in a crude oil production field with clay soils, located in the west of Zulia State in Venezuela. After the collection, revision and classification of soil and operating parameter data in the field, a definition of input and output variables was carried out, used to generate 2 models, one regression type and the other classification type. For the neural network model, a low regression fit (R2) of 6.62 % and an RMSE of 2.13 were obtained, indicators of low model efficiency due to the restrictions of the data provided and sample size. On the contrary, for the decision tree classification model, an accuracy of 98.14 % was obtained, when classifying the corrosion rate in severity ranges. This classification tree model will serve as a starting point for subsequent research to delve deeper into the area.

Downloads

Download data is not yet available.

Author Biography

Lisseth Ocando, Centro de Estudios de Corrosión, Facultad de Ingeniería, Universidad del Zulia, Estado Zulia, Maracaibo 4001, Venezuela

Ingeniera Química (2002) con Maestría en Corrosión (2006), ambos títulos obtenidos en La Universidad del Zulia (LUZ). Es profesora a Investigadora en el Centro de Estudios de Corrosión de LUZ desde el año 2003. Tiene más de 20 años de experiencia en investigación y desarrollo en el área Corrosión Inducida Microbiológicamente (MIC), generando más de 20 publicaciones para revistas nacionales e internacionales y asesorando más de 20 tesis y trabajos especiales de grado, principalmente en el área de MIC. Posee las certificaciones “NACE Corrosion Technologist” y “NACE Senior Internal Corrosion Technologist” y ha realizado diversos cursos internacionales relacionados con el área, destacándose entre ellos: Cathodic Protection Tester (CP1), Internal Corrosion for Pipelines, Corrosion Control in the Refining Industry, Biofilm Summer School 2006 y STEM Corrosion in the Oil and Gas Industry

References

Agencia Nacional de Hidrocarburos. (2018). Estadísticas de Venezuela [en línea] disponible en: http://www.anh.gob.ve/estadisticas/index.php/estadisticas-venezuela [consulta: 7 julio 2023].
API 1160. (2019). Managing system integrity for hazardous liquid pipelines. Washington: American Petroleum Institute (API).
ASME B31.8S. (2020). Managing system integrity of gas pipelines. New York: The American Society of Mechanical Engineer (ASME).
Calderón, J. A., Delgado, J., Peñaranda, S. A. (2005). Análisis estadístico de los factores que intervienen en la corrosión de tuberías enterradas. Revista de la Facultad de Ingeniería Universidad de Antioquia, 34, 23-34.
De Arriba, L., Rodríguez, V., Villanueva, J., Ortega, F. (2020). Design of predictive models to estimate corrosion in buried steel structures. Sustainability, 12(23), 9879.
Ezuber, H., Alshater, A., Hossain, Z., El-Basir, A. (2020). Impact of soil characteristics and moisture content on the corrosion of underground steel pipelines. Arabian Journal for Science and Engineering, 46, 6177-6188.
Kiani-Khouzani, M., Bahrami, A., Hosseini-Abari, A., Khandouzi, M., Taheri, P. (2019). Microbiologically influenced corrosion of a pipeline in a petrochemical plant. Metals, 9(4), 459.
Kim, C., Chen, L., Wang, H., Castaneda, H. (2021). Global and local parameters for characterizing and modeling external corrosion in underground coated steel pipelines: a review of critical factors. Journal of Pipeline Science and Engineering, 1(1), 17-35.
Li, Y., He, X., Shuai, J. (2022). Risk analysis and maintenance decision making of natural gas pipelines with external corrosion based on Bayesian network. Petroleum Science, 19, 1250-1261.
Seghier, M. E. A. B., Keshtegar, B., Taleb-Berrouane, M., Abbassi, R., Nguyen-Thoi, T. (2021). Advanced intelligence frameworks for predicting maximum pitting corrosion depth in oil and gas pipelines. Process Safety and Environmental Protection, 147, 818-833.
Song, Y., Wang, Q., Zhang, X., Dong, L., Bai, S., Zeng, D., Zhang, Z., Zhang, H., Xi, Y. (2023). Interpretable machine learning for maximum corrosion depth and influence factor analysis. NPJ Mater Degradation, 7(1), 9.
UNIR. (2021). Árboles de decisión: en qué consisten y aplicación en Big Data [en línea] disponible en: https://www.unir.net/ingenieria/revista/arboles-de-decision [consulta: 7 julio 2023].
Xu, M., Liang, H., Liu, Y., Asselin, E. (2021). Predicting the external corrosion rate of X60 pipeline steel: a mathematical model. Metals, 1(4), 583.
Zakikhani, K., Nasiri, F., Zayed, T. (2021). A failure prediction model for corrosion in gas transmission pipelines. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 235(3), 374-390.
Published
2023-12-27
How to Cite
Faría González, J. and Ocando, L. (2023) “A Prediction Model for External Corrosion Rate for Buried Pipelines in Clay Soil”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 46(1), p. e234616. doi: 10.22209/rt.v46a16.
Section
Notas Técnicas.