A fractional generalization of the Lauwerier formulation of the temperature field problem in oil strata
Abstract
In the present paper we give a fractional generalization of the Lauwerier formulation of the boundary value problem of the temperature field in oil strata. The Caputo fractional derivative operator and the Laplace transform are the important tools for solving the proposed problem. By using Efros”™ theorem which is a modified form of convolution theorem for Laplace transform, the solution is obtained in an integral form with integrand expressed as convolution of auxiliary functions of Wright”™s type.
Downloads
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0