Parameter estimation and validation of power transformers top oil temperature model by applying genetic algorithms.

  • Rómulo Pérez Universidad Nacional Experimental Politécnica "Antonio José de Sucre" UNEXPO-Venezuela
  • Enrique Matos Alfonso Universidad de Cienfuegos "Carlos Rafael Rodríguez"-Cuba
  • Sergio Fernández Instituto Superior Politécnico "José Antonio Echeverría"-Cuba

Abstract

This paper presents a technique based on Genetic Algorithms for the parameter estimation and validation of the power transformers top oil temperature model proposed by Lesieutre [1]. For such aim, data are used in on-line diagnosis and monitoring systems, installed in a 100 MVA 230/115/24 kV OA/FA/FOA transformer of Barquisimeto Substation at ENELBAR, Venezuela since the year 2003. The objective of this work is to compare mistake reduction between the model and the top oil temperature measurement when their parameters estimation is considered by genetic algorithms and least-squares. The parameters estimation by genetic algorithms evidence better results of the model, which improves its performance as a power transformer diagnosis tool.

 

Downloads

Download data is not yet available.
How to Cite
Pérez, R., Matos Alfonso, E. and Fernández, S. (1) “Parameter estimation and validation of power transformers top oil temperature model by applying genetic algorithms.”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 32(3). Available at: https://mail.produccioncientificaluz.org/index.php/tecnica/article/view/6684 (Accessed: 26December2024).
Section
Review paper