Modelación reológica del suero de leche en función de la velocidad de corte, temperatura y concentración de sólidos totales. / Modeling rheological of whey on function of shear rate, temperature and total solids concentration.
Resumen
Resumen
El suero de leche es el subproducto más abundante de la industria láctea y su disposición en el medio ambiente sin un tratamiento previo se debe a la falta de conocimiento de sus características nutricionales, fisicoquímicas y fenomenológicas (reológicas) de este subproducto. El objetivo de esta investigación fue estudiar las propiedades reológicas de suero de leche en función de la temperatura y concentración de sólidos totales, para ello se desarrollaron curvas de flujo viscoso en estado estacionario con el incremento de la temperatura (20 a 90°C) a diferentes concentraciones de sólidos totales (25, 50, 75, 100%). Los datos experimentales se midieron con un reómetro AntonPaar MCR 301 y se ajustaron con el software Rheoplus/32 V2. 81, obteniendo el modelo de Herschel-Bulkley como el modelo reológico que mejor describe el comportamiento fenomenológico del suero de leche. Los resultados obtenidos mostraron que el suero de leche es un fluido no Newtoniano con características dilatantes, donde la viscosidad aumenta con el incremento de la concentración y disminuye con el aumento de la temperatura. El diseño de experimentos factorial 3k permitió determinar a la temperatura como factor de mayor efecto significativo sobre la viscosidad del suero de leche.
Abstract
The whey is the most abundant by-product of the dairy industry and its disposal in the environment without prior treatment is due to the lack of knowledge of its nutritional, physicochemical and phenomenological (rheological) characteristics of this by-product.The goal of this research was to study the rheological properties of whey as a function of temperature and concentration of total solids, for which viscous flow curves were developed in steady state with the increase in temperature (20 to 90°C) at different concentrations of total solids (25, 50, 75, 100%).The experimental data were measured with an Anton Paar MCR 301 rheometer and adjusted with the Rheoplus/32 V2. 81 software, obtaining the Herschel-Bulkley model as the rheological model that best describes the phenomenological behavior of whey.The results obtained showed that the whey is a non-Newtonian fluid with dilatant characteristics, where the viscosity increases with the increase in concentration and decreases with the increase in temperature. The design of factorial experiments 3k that allowed to determine the temperature as a factor of greater significant effect on the viscosity of the whey
Descargas
Citas
Prazares, A.R., Carvalho, F. & Rivas J.: Cheese whey
management: A review. Journal of Environmental
Management, Vol. 110, No. 1 (2012) 48-68.
Guerra, A. V. A, Castro, L. M. M. & Tovar, A. L. Q.:
Aprovechamiento del lactosuero como fuente de
energía nutricional para minimizar el problema de
contaminación ambiental. Revista de Investigación
Agraria y Ambiental, Vol. 4, No. 2(2013) 55-65.
Monteros-Lagunes, M., Juárez-Lagunes, F. I. & Garcia-Galindo, H. S.: Fermented Whey whit Lactobacilli
for calf feeding in the Tropics. Agrociencia, Vol. 43,
No. 6(2009) 585-593.
Andrade, R.D., Ortega, F.A., Montes, E.J., Torres, R.,
Pérez, O.A., Castro, M. & Gutiérrez, L.A.: Caracterización fisicoquímica y reológica de la pulpa de
guayaba (Psidiumguajava L.) variedades híbrido de
KlomSali, Puerto Rico, D14 y Red. Revista de la Facultad Química y Farmacéutica, Vol. 16, No.1 (2009)
-18.
Quek, M. C., Chin, N. L., &Yusof, Y. A.: Modelling of
rheological behavior of soursop juice concentrates
using shear rate-temperature-concentration superposition. Journal of Food Engineering, Vol. 118,
No.4(2013) 380-386.
Toğrul, H., & Arslan, N.: Mathematical model for prediction of apparent viscosity of molasses. Journal of
Food Engineering, Vol. 62, No.3 (2004) 281-289.
Tabilo-Munizaga, G. & Barbosa-Cánovas. G.V.: Rheology for the food industry. Journal of Food Engineering, Vol. 67, No.1 (2005) 147-156.
Abu-Jdayil, B.: Modelling the time-dependent rheological behavior of semisolid foodstuffs. Journal of
Food Engineering, Vol. 57, No.1(2003) 97-102.
Cepeda, E. & Villarán, M.C.: Density and viscosity of
Malus floribunda juice as a function of concentration
and temperature. Journal Food Engineering, Vol. 42,
No. 2(1999) 103-107.
Zainal. B.S., Rahman, R. A., Ariff, A.B., Saari, B.N. &
Asbi, B.A.: Effects of temperature on the physical
properties of pink guava juice at two different concentrations. Journal of Food Engineering, Vol. 43 No.
(2000) 55-59.
Arslan, E., Yener, M.E. &Esin, A.: Rheological characterization of tahin/pekmez (sesame paste/concentrated grape juice) blends. Journal of Food Engineering, Vol. 69, No. 2(2005) 167-172.
Vandresen, S., Quadri, M.G., de Souza, J.A. &Hotza, D.:
Temperature effect on the rheological behavior of
carrot juices. Journal of Food Engineering, Vol. 92,
No. 3(2009) 269-274.
Karaman, S. & Kayacier, A.: Effect of temperature on
rheological characteristics of molasses: Modeling
of apparent viscosity using Adaptive Neuro-Fuzzy
Inference System (ANFIS). LWT- Food Science and
Technology, Vol. 44, No. 8(2011) 1717-1725.
Ibarz, A., Gonzales, C. & Esplugas, S.: Rheology of
clarified fruit juices. III: Orange Juices. Journal of
Food Engineering, Vol. 21, No. 4(1993) 485-494.
Juszczak, L., & Fortuna, T.: Effect of temperature and
soluble solid content on viscosity of cherry juice
concentrate. International Agrophysics, Vol. 18, No.
(2004) 17-21.
Da Silva, F.C., Guimarães, D.H. P., & Gasparetto, C.
A.:Reología do suco de acerolaefeitos da concentracão e temperatura. CienciaTecnología de Alimentos, Vol. 25, No.1(2005) 121-126.
Rao, A.: Rheology of Fluid and Semisolid Foods: Principles and Applications, Springer Science & Business
Media, United States of America, 2007.
Manayay, D. & Ibarz, A.: Modelamiento de la cinética
de reacciones del pardeamiento no enzimático y el
comportamiento reológico, en el proceso térmico de
jugos y pulpas de frutas. Scientia Agropecuaria Vol.
, No. 2(2010) 155-168.
Magerramov, M.A., Abdulagatov, A.I., Azizov, N.D. &
Abdulagatov, I.M.: Effect of temperature, concentration, and pressure on the viscosity of pomegranate
and pear juice concentrates. Journal of Food Engineering, Vol. 80, No. 2 (2007) 476-489
Belibağli, K. B. & Dalgic, A. C.: Rheological properties
of sour-cherry juice and concentrate. International
Journal of Food Science and Technology, Vol. 42, No.
(2007) 773-776.
Juszczack, L., Witczak, M., Fortuna, T. & Solarz, B.:
Effect of temperature and soluble solids content on
the viscosity of beetroot (Beta vulgaris) juice concentrate. International Journal of Food Properties,
Vol. 13, No. 1 (2010) 1364-1372.
Augusto, P.E., Cristianini, M. & Ibarz, A.: Effect of
temperature on dynamic and steady-state shear
rheological properties of siriguela (Spondiaspurpurea L.) pulp. Journal of Food Engineering, Vol. 108,
No. 2(2012) 283-289.
Genovese, D.B. & Rao, M. A.: Components of vane
yield stress of structured food dispersions. Journal
of Food Science, Vol. 70, No. 8(2005) 498-504.
Košmerl, T., Abramovič, H. & Klofutar, C.: The rheological properties of Slovenian wines. Journal of
Food Engineering, Vol. 46, No. 3(2000) 165-171.
Harper, J.C. & Sahrigi, A.E.:Viscometric behavior of
tomato concentrates. Journal of Food Science, Vol.
, No.3(1965) 470-476.
Castaldo, D., Palmieri, L., Voi, A. & Costabile, P.: Flow
properties of Babaco (CaricaPentagona) purees and
concentrates. Journal of Texture Studies, Vol. 21, No.
(1990) 253-264.
Kaya, A. & Sözer, N.:Rheological behavior of sour
pomegranate juice concentrates (Punicagranatum
L.). International Journal of Food Science and Technology, Vol. 40 No. 2(2005) 223-227.
Mackey, K.L., Ofoli, R. Y., Morgan, R. G & Steffe, J. F.:
Rheological modeling of potato flour during extrusion cooking. Journal of Food Process Engineering,
Vol. 12, No. 1(1989) 1-11.
Ibarz, A. & Barbosa-Canovas,G.V.,Unit Operations in
Food Engineering, CRC Press LLC, United Estate of
America, 2003.
Baroutian, S., Eshtiaghi, N. & Gapes, J.D.: Rheology
of primary and secondary sewage sludge mixture:
Dependency o temperature and solid concentration.
Bioresource Technology, Vol. 140,(2013) 227-233.
Sun, A. & Gunasekaran, S.: Yield stress in foods: measurements and applications. International Journal of
Food Properties, Vol. 12, No. 1(2009) 70-101.
Chuah, T. G., Ling, H. L., Chin, N. L., Choong, T. S. &
Fakhru´l- Razi, A.: Effect of temperature on rheological behavior of dragon fruit (Hylocereus sp.) juice. International Journal of Food Engineering, Vol. 4, No.
(2008).
Hassan, B.H. & Hobani, A.I.: Flow properties of
Roselle (Hibiscus sabdariffa L.) Extract. Journal of
Engineering, Vol 35, No.4(1998) 459-470.
Chin, N.L., Chan, S. M., Yusof, Y.A., Chuah, T. G. & Talib,
R.A.: Modelling of rheological behavior of pummel
juice concentrates using master-curve. Journal of
Food Engineering, Vol. 93, No. 2 (2009) 134-140.
Saravacos, G.D.: Effect of temperature on viscosity of
fruit juices and purees. Journal of Food Science, Vol.
, No. 2(1970) 122–125.
Grigelmo-Miguel, N., Ibarz-Ribas. A. & Martín-Belloso, O.: Rheology of peach dietary fibre suspensions.
Journal of Food Engineering, Vol. 39, No. 1(1999)
-99.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0