Avaliação da Isomerização de α-Pineno Epóxido a Aldeído Campolênico Usando um Catalisador Obtido de Cascas de Laranja (Citrus sinensis)
Resumo
Cascas de Laranja (Citrus sinensis) são abundantes resíduos lignocelulósicos que podem ser utilizados como fonte de carbono para obtenção de sólidos com potencial catalítico na transformação de terpenos e seus óxidos em produtos de valor agregado. Esta pesquisa buscou avaliar a isomerização do óxido de α-pineno a aldeído canfolénico, utilizando um catalisador obtido a partir de cascas de laranja. O material OAC-Zn foi obtido pela ativação das cascas com ZnSO4.7H2O, seguida de tratamento térmico a 500 °C; um sólido também foi obtido a partir da pirólise da casca a 500 °C (OC-500). Através do DRX foi identificada a presença de ZnO e ZnS no OAC-Zn; As análises de TGA indicaram estabilidade térmica em OAC-Zn e OC-500; As imagens de SEM mostraram superfícies porosas de morfologia diferente, bem como a presença de microporosidade em OC-500 e mesoporosidade em OAC-Zn, que foram confirmadas por adsorção física de nitrogênio. Nas análises de EDX, os elementos C, O, Zn e S foram identificados em OAC-Zn; os resultados do TPD-NH3 mostraram que os sólidos continham acidez média e fraca. Aldeído canfolénico foi sintetizado com uma seletividade de 96 % em um material carbonáceo mesoporoso, a partir de cascas de laranja usando ZnSO4.7H2O como agente ativador
Downloads
Referências
Ajay, K. M., Dinesh, M. N., Byatarayappa, G., Radhika, M. G., Kathyayini, N., Vijeth, H. (2021). Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors. Inorganic Chemistry Communications, 127, 108523.
Andas, J., Ab, N. A. (2018). Synthesis and characterization of tamarind seed activated carbon using different types of activating agents: a comparison study. Materials Today: Proceedings, 5 (9), 17611-17617.
Barakov, R., Shcherban, N., Mäki-Arvela, P., Yaremov, P., Bezverkhy, I., Wärnå, J., Murzin, D. J. (2022). Hierarchical beta zeolites as catalysts in α-pinene oxide isomerization. ACS Sustainable Chemistry & Engineering, 10(20), 6642-6656.
Battista, A., Muhammad, H. H., Zaman, W. Q., Mohsin, M. Z., Zhang, J., Liu, Z., Tian, X., Rehman, S-ur., Khan, I. M., Niazi, S., Zhuang, Y., Guo, M. (2021). Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Critical Reviews in Biotechnology, 42(8), 1284-1303.
Battista, F., Remelli, G., Zanzoni, S., Bolzonella, D. (2020). Valorisation of residual orange peels: limonene recovery, volatile fatty acids and biogas productions. ACS Sustainable Chemistry, 8(1), 6834–6843.
Fernandez, M. E., Nunell, G. V., Bonelli, P. R., Cukierman, A. L. (2014). Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes. Industrial Crops and Products, 62, 437-445.
Ghaedi, M., Larki, H. A., Kokhdan, S. N., Marahel, F., Sahraei, R., Daneshfar, A., Purkait, M. K. (2012). Synthesis and characterization of zinc sulfide nanoparticles loaded on activated carbon for the removal of methylene blue. Environmental Progress & Sustainable Energy, 32(3), 535-542.
Hassan, M. F., Sabri, M. A., Fazal, H., Hafeez, A., Shahzad, N., Hussain, M. (2019). Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. Journal of Analytical and Applied Pyrolysis, 145, 104715-10479.
Hsu, L-Y., Teng, H. (2000) Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Processing Technology, 64(1-3), 155-166.
Kawano, T., Kubota, M., Onyango, M. S., Watanabe, F., Matsuda, H. (2008). Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Applied Thermal Engineering, 28 (8-9), 865-871.
Li, Z., Zhai, K., Wang, G., Li, Q., Guo, P. (2016). Preparation and electrocapacitive properties of hierarchical porous carbons based on loofah sponge. Materials, 9(11), 912-922.
Lonkar, S. P., Pillai, V. V., Alhassan, S. M. (2018). Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Scientific Reports, 8(1), 13401-13414.
Muniandy, L., Adam, F., Mohamed, A. R., Ng, E. P. (2014). The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials, 197, 316-323.
Ozdemir, I., Şahin, M., Orhan, R., Erdem, M. (2014). Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology, 125, 200-206.
Pajaro, N. P., Oliver, V., Tadeo, J. (2011). Química verde: un nuevo reto. Ciencia e Ingeniería Neogranadina, 21(2), 169-182.
Pandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329-341.
Pathak, P. D., Mandavgane, A. S., Kulkarni, B. D. (2017). Fruit peel waste: characterization and its potential uses. Current Science, 113(3), 444-454.
Pełech, I., Sibera, D., Staciwa, P., Kusiak-Nejman, E., Kapica-Kozar, J., Wanag, A., Narkiewicz, U., Morawski, A. W. (2021). ZnO/carbon spheres with excellent regenerability for post-combustion CO2 capture. Materials, 14(21), 6478-6487.
Pitínová-Štekrová, M., Eliášová, P., Weissenberger, T., Shamzhy, M., Musilová, Z., Čejka, J. (2018). Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science & Technology, 8(18), 4690-4701.
Poleo, N., Oliveros, S., Colina M., Rincón, N., Mesa, J., Colina, G. (2010). Study of different chemical activatings on obtaining activated carbon from Hymenaea courbaril L. shell for cadmium (11) removal. Revista Técnica de la Facultad de Ingeniería de la Universidad Zulia, 33(1), 29-38.
Rezae, A., Godini, H., Dehestani, S., Khavanin, A. (2008). Application of impregnated almond shell activated carbon by zinc and zinc sulfate for nitrate removal from water. Journal of Environmental Health Science & Engineering, 5(2), 125-130.
Sanchéz, J. E., Villa, A. L. (2019). Isomerization of α and β pinene epoxides over Fe or Cu supported MCM-41 and SBA-15 materials. Applied Catalysis A: General, 580, 17-27.
Sánchez, J. E., Gelves, J. F., Márquez, M. A., Dorkis, L., Villa, A. L. (2020). Catalytic isomerization of α-pinene epoxide over a natural zeolite. Catalysis Letters, 150, 3132-3148.
Santhosh, A., Dawn, S. S. (2021). Synthesis of zinc chloride activated eco-friendly nano-adsorbent (activated carbon) from food waste for removal of pollutant from biodiesel wash water. Water Science Technology, 84(5), 1170-1181.
Singh, S. A., Advani, J. H., Biradar, A. V. (2020). Phosphonate functionalized carbon to trans-carveol. Dalton Transactions, 49, 7210-7217.
Singh, A. S., Naikwadi, D. R., Ravi, K., Biradar, A. V. (2022). Chemoselective isomerization of α-pinene oxide to trans- by robust and mild Brønsted acidic zirconium phosphate catalyst. Molecular Catalysis, 521, 112189.
Sneha, D., Thorat, P. V., Topare, N. S. (2018). Preparation and characterization of activated carbon from orange peels. Journal of Catalyst and Catalysis, 5(1), 15-20.
Štekrová, M-, Kumar, N., Aho, A., Sinev, I., Grunert, W., Dahl, J., Roine, J., Arzumanov, S. S., Mäki-Arvela, P., Murzin, D. Y. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: selective synthesis of campholenic aldehyde. Applied Catalysis A: General, 470, 162-176.
Stekrova, M., Eliášová, P., Weissenberger, T., Shamzhy, M., Musilova, Z., Cejka, J. (2018). Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Journal Catalysis Science Technology, 8, 4690-4701.
Tovar, A. K., Godínez, L. A., Espejel, F., Ramírez-Zamora, R. M., Robles, I. (2019). Optimization of the integral valorization process for orange peel waste using a design of experiments approach: production of high-quality pectin and activated carbon. Waste Management, 85, 202-213.
Vrbková, E., Vyskočilová, E., Lhotka, M., Červený, L. (2020). Solvent influence on selectivity in α-pinene oxide isomerization using MoO3-modified zeolite BETA. Catalysts, 10(11), 1244-1261.
Wang. L., Zhou, P., Guo, Y., Zhang, J., Qiu, X., Guan, Y., Yu, M., Zhue, H., Zhang, Q. (2019). The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nano-porous carbon. RSC Advances, 9(17), 9718-9728.
Wang, Y., Dou, H., Ding, B., Wang, J., Chang, Z., Xu, Y. L., Hao, X. D. (2016). Nanospace-confined synthesis of oriented porous carbon nanosheets for high-performance electrical double layer capacitors. Journal of Materials Chemistry A, 4(43), 16879-16885.
Wei, Q., Chen, Z., Cheng, Y., Wang, X., Yang, X., Wang, Z. (2019). Preparation and electrochemical performance of orange peel based-activated carbons activated by different activators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 574, 221-227.
Xi,Y., Huang, S., Yang, D., Qiu, X., Su, H., Yi, C., Li, Q. (2021). Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries. Green Chemistry, 22(13), 4321-4330.
Direitos de Autor (c) 2023 Aída Luz Villa, Marta Mediavilla
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0