Basic Sturm -Liouville Theory
Resumo
In the real domain, a basic analogue of a simple form of Sturm Liouville equation of the second order is studied, and it is shown that, with proper boundary conditions, its solutions are orthogonal with respect to basic integration. Basic functions which are analogous to the sine and cosine are briefly discussed and are utilised in an investigation of the conditions that solutions of the equation under consideration should be oscillatory . Final1y, it is shown that an arbitrary function may be expanded in a series of basic eigen-functions. In the limit as q, the base, tends to unity, we recover results which are well-known in ordinary Sturm-Liouville theory.
Downloads
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0