Dynamic systems control and identification using VSC-based learning algorithms for perceptron networks
Resumo
In this paper a set of Variable Structure Control (VSC)-based on-line learning algorithms for continuous time two layer and three layer perceptron networks with non-linear and linear activation functions are presented. The proposed algorithms result in a temporal learning capabilities of a neural network with dynamically adjusted weights, and zero convergence of the learning error in a finite time. These learning algorithms are used with identification and control schemes for linear and non linear dynamic systems.
Downloads
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0