Dissolution of Monte Fresco phosphate rock and their effects on phosphorus fractionation in Venezuelan soils
Abstract
Incubation tests analysed the reaction of Monte Fresco phosphoric rock (PR) with nine Venezuelan soils representative of different agro-ecological conditions, and contrasting physical-chemical and mineralogical characteristics linked to the PR dissolution process. The soils presented different capacities to dissolve the PR; response, generally associated with its intrinsic characteristics. The highest PR dissolution value (ΔP) was found in the soil Iguana (50 mgP.kg-1 soil), soil with appropriate properties to induce this process: acidic pH and low content of total and available P, followed with intermediate values (7-22 mg P.kg-1 soil) for Barinas and Casupal with acidic pH and moderate content of total P. The other soils had low dissolution rates (1.4-3.0 mg P.kg-1 soil) and higher P content. Finally, Veguitas and Bajo Seco soils with pH ≥5.6, and high total and available P contents and exchangeable calcium, showed no PR dissolution. The process of dissolving the PR during incubation is complex, it is activated with the presence of hydrogen ions around the fertiliser but can be affected by enzymatic and microbiological events as PR interacts with the soil, so that the dynamics of PR dissolution fluctuate.
Downloads
References
Casanova, E. 2007. Efecto de rocas fosfóricas naturales y modificadas sobre la cantidad y calidad de pastos introducidos en Venezuela. Agronomia Tropical 57, 271-280.
Cicek, H., Bhullar, G.S., Mandloi, L.S. Andres, C. and Riar, A.S. (2000). Partial acidulation of rock phosphate for increased productivity in organic and smallholder farming. Sustainability 12, 607. https://doi.org/10.3390/su12020607
Herrera, T. y Casanova, E. (1997). Efecto de las características de suelos y rocas fosfóricas sobre el fósforo disponible. Venesuelos 5, 34-39. Corpus ID: 101184690
Kellogg, L. Bridgham, S. and López-Hernández. D. (2006). Organic phosphorus mineralization. A comparison of isotopic and non-isotopic methods. Soil Science American Journal 70, 1349-1358. DOI: 10.2136/sssaj2005.0300
Hunt, J.F.T., Ohno, T., He, Z., Honeycutt, C.W. and Dail, D.B. (2007). Inhibition of phosphorus sorption to goethite, gibbsite and kaolin by fresh and decomposed organic matter. Biology Fertility Soils 44, 277-288.
López-Contreras, A.Y., Hernández-Valencia, I. and López-Hernández, D. (2007). Fractionation of soil phosphorus in organic amended farms located on sandy soils of Venezuelan Amazonian. Biology Fertility Soils 43, 771-777. http://dx.doi.org/10.1007/s00374-006-0162-x
López de R. I., López, M., Sánchez, A., Nieves, L. y Wiedenhofer, H. (1994). Respuesta del pasto Andropogon gayanus a la roca fosfórica en dos suelos ultisoles del estado Guárico. Agronomía Tropical 44(1), 81-100.
López-Hernández, D. and Burnham, C.P. (1974). The covariance of phosphate sorption with other soil properties in some British and Tropical soils. Journal Soil Science 25, 196-206.DOI:10.1111/J.1365-2389.1974.TB01116. XCorpus ID: 97707902
López-Hernández D. (1977). La Química del Fósforo en Suelos Ácidos. Ediciones de la Biblioteca (EBUC). Universidad Central de Venezuela. Caracas. 123p
López-Hernández, D. (2016). Soils with hardened laterites are they really high P-sorbing? Ciencia 24, 78-186.
López-Hernández, D. y G. Romero. G. (2019). Cambios en las fracciones de P en suelos por la adición de roca fosfórica Monte Fresco a diferentes periodos de incubación y contenidos de humedad. Bioagro 31, 13-22.
Mora, E., Toro, M., Flores, E. and López-Hernández, D. (2017). Plant growth promoting abilities of phosphate solubilizing bacteria native from a high P sorbing Ultisol. Annals Advance Agricultural Science 1(1), 1-10. DOI: 10.22606/as.2017.11001
Mora, E., López-Hernández, D. and Toro, M. (2019). Arbuscular mycorrhiza and PGPR applications in tropical savannas. In: Zúñiga, D., Ormeño, E. y González A.F (Eds.) Microbial probiotics for agricultural systems. Advances in agronomic use. Springer. ISBN: 978-3-030-17596-2. 169-178.
Morillo, A., Sequera, O. y Ramírez. R. (2007). Roca fosfórica acidulada como fuente de fósforo en un suelo ácido con o sin encalado. Bioagro 19, 161-168.
Pérez, M. J. (1995). Comparación de cuatro métodos extractantes de fósforo disponible en suelos tratados con fuentes de fósforo de diferentes grados de solubilidad. Agronomía Tropical 45(4), 507-526.
Pérez, M.J. y Smyth, T.J. (2005). Potencial agronómico y eficiencia agronómica de tres rocas fosfóricas de diferente composición mineralógica. Revista Facultad Agronomía (LUZ). 22, 214-227.
Rajan, S.S., Watkinson, J.H. and Sinclair, A.G. (1996). Phosphate rocks for direct application to soils. Advance in Agronomy 57. 77-159. https://doi.org/10.1016/S0065-2113(08)60923-2
Ravindran. A. and Yang, S.S. (2015). Effects of vegetation type on microbial biomass, carbon and nitrogen in subalpine mountain forest soils. Journal of Microbiology, Immunology and Infection 48 (4), 362-369. DOI: 10.1016/j.jmii.2014.02.003
Romero, G. y López-Hernández, D. (2018). Evaluación de métodos para la disolución de la roca fosfórica Monte Fresco. Bioagro 30, 151-156.
Reynolds Jr., R.C. and Moore, D.M. (1989). Principles and Techniques of Quantitative Analysis of Clay Minerals by X-Ray Powder Diffraction. Oxford University Press, New York, 332-337.
Sequera, O. y Ramírez, R. (2013). Roca fosfórica acidulada con ácido sulfúrico y tiosulfato de amonio como fuente de fósforo para frijol en dos tipos de suelo. Bioagro 25(1), 39-46.
Copyright (c) 2022 Danilo López-Hernández
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.