Surfactant properties and emulsifying activity of the gum exudate of Prosopis juliflora (Sw.) DC.
Abstract
Gums exudates are macromolecules consisting of carbohydrates (majority fraction), proteins and lipids (minority fraction), with variable concentrations of minerals, polyphenols, flavonoids, tannins and other bioactive phytochemical compounds. These natural products are used as emulsifying agents in multiple industries. The surfactant properties of a new source of gum exudate produced by Prosopis juliflora (Sw.) DC. were evaluated. Additionally, water-oil dispersions prepared with this natural polymer were tested for their emulsifying capacity and stability. A Du Noüy ring tensiometer was used to determine the amphipathic behavior of the investigated gum. The gum exudate of P. juliflora tested at 0.5 % m/v, decreases the values of surface tension (49.35 dyne.cm-1) and interfacial tension (12.78 dyne.cm-1), which evidences the potential emulsifying activity (EA) of this polysaccharide. EA values of 95 % and emulsion stability of 95.8 % were obtained, suggesting that P. juliflora gum contributes to improve the capacity and speed of adsorption of molecules between the dispersed phase and continues to form a stable emulsion. The surfactant and emulsifying activity of the investigated gum is associated with the high protein content (16.89 %) and the presence of methyl groups in its structure. Therefore, the gum exudate of P. juliflora constitutes a promising source of hydrocolloids as an emulsifier that could be evaluated in the manufacture of pharmaceuticals, food and even cosmetics. Additionally, it constitutes an unexploited natural resource that would contribute to the development of the South American regional economies where this species grows.
Downloads
References
Bhushan B. & Annapure S. (2018). Physicochemical, functional and rheological investigation of Soymida febrifuga exudate gum. International Journal of Biological Macromololecules 111: 1116-1123. https://doi.org/10.1016/j.ijbiomac.2018.01.117
Bhushan B., Chaudhari U. & Annapure S. (2020). Physiochemical and rheological characterization of Pithecellobium dulce (Roxb.) benth gum exudate as a potential wall material for the encapsulation of rosemary oil. Carbohydrate Polymer Technologies and Applications 1:100005. https://doi.org/10.1016/j.carpta.2020.100005.
Chávez-Narváez G., Arenas G., Parra-Castillo I., Luzardo-Morillo M., Bravo B., Ysambertt F. & Márquez N. (2009). Estudio de las variables fisicoquímicas en el proceso de micelización de mezclas de surfactantes no-iónicos polietoxilados en la interfase agua/aire Parte I: efecto de la salinidad. Ciencia 17(3): 235–244. https://www.researchgate.net/publication/272507552_Estudio_de_las_variables_fisicoquimicas_en_el_proceso_de_micelizacion_de_mezclas_de_surfactantes_no-ionicos_polietoxilados_en_la_interfase_aguaaire_Parte_I_efecto_de_la_salinidad
Clamens C., Rincón F., Sanabria L., Vera A. & León de Pinto G. (2000). Species widely disseminated in Venezuela which produce gum exudate. Food Hydrocolloids 14(3): 253-257. https://doi.org/10.1016/S0268-005X(00)00004-7
Dickinson E. (2012). Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids 28: 224-241. https://doi.org/10.1016/j.foodhyd.2011.12.017
Dickinson E. (2011). Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids 25: 1966–1983. https://doi.org/10.1016/j.foodhyd.2010.12.001
Dickinson E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids 23(6): 1473 -1482. https://doi.org/10.1016/j.foodhyd.2008.08.005
Garti N., Slavin Y. & Aserin A. (1999). Surface and emulsification of new gum extracted from Portulaca oleracea. Food Hydrocolloids 13: 145-155. https://doi.org/10.1016/S0268-005X(98)00082-4.
Grein A., Silva B.C., Wendel C.F., Tischer C.A., Sierakowski M.R. & Moura A.B. (2013). Structural characterization and emulsifying properties of polysaccharides of Acacia mearnsii de Wild gum Carbohydrate Polymers 92: 312–320. https://doi.org/10.1016/j.carbpol.2012.09.041
Huang X., Kakuda Y. & Cui W. (2001). Hydrocolloids in emulsions: Particle size distribution and interfacial activity. Food Hydrocolloids 15 (4-6): 533–542. https://doi.org/10.1016/S0268-005X(01)00091-1
Lee S. J. & McClements D. J. (2010). Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids 24: 560–569. https://doi.org/10.1016/j.foodhyd.2010.02.002
Licá I. C. L., dos Santos Soares A. M., de Mesquita L. S. S. & Malik S. (2018). Biological properties and pharmacological potential of plant exudates. Food Research International 105: 1039–1053. https://doi.org/10.1016/j.foodres.2017.11.051Get rights and content
López-Franco Y. L., Calderón de la Barca A. M., Valdez M. A., Peter M. G., Rinaudo M. & Chambat G. (2008). Structural characterization of mesquite (Prosopis velutina) gum and its fractions. Macromolecular Bioscience 8: 749-757. https://doi.org/10.1002/mabi.200700285.
López-Franco Y. L., Cervantes-Montaño C. I., Martínez-Robinson K. G., Lizardi-Mendoza J. & Robles-Ozuna L.E. (2013). Physicochemical characterization and functional properties of galactomannans from mesquite seeds (Prosopis spp.). Food Hydrocolloids 30: 656-660. https://doi.org/10.1016/j.foodhyd.2012.08.012.
López-Franco Y., Córdova-Moreno R. E., Goycoolea F. M., Valdez M., Juárez-Onofre J. & Lizardi-Mendoza J. (2012). Classification and physicochemical characterization of mesquite gum (Prosopis spp). Food Hydrocolloids 26, 159-166. https://doi.org/10.1016/j.foodhyd.2011.05.006
López-Franco Y.L., Gooycolea F.M. & Lizardi-Mendoza J. (2015). Gum of Prosopis/Acacia Species. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. 641–662. https://doi.org/10.1007/978-3-319-16298-0_14.
Mudgil D. & Barak S, (2020). Mesquite gum (Prosopis gum): Structure, properties & applications - A review. International Journal of Biological Macromolecules (159):15 1094-1102. https://doi.org/10.1016/j.ijbiomac.2020.05.153.
Muñoz J., Rincón F., Alfaro M. C., Zapata I., de la Fuente J., Beltrán O. & León de Pinto G. (2007). Rheological properties and surface tension of Acacia tortuosa gum exudate aqueous dispersions. Carbohydrate Polymers 70: 198–205. https://doi.org/10.1016/j.carbpol.2007.03.018
Naji S., Razavi S. & Karazhiyan H. (2012). Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocolloids 28: 75-81. https://doi.org/10.1016/j.foodhyd.2011.11.012
Pérez-Mosqueda L. M., Ramirez P., Alfaro M.C., Rincón F. & Muñoz J. (2013). Surface properties and bulk rheology of Sterculia apetala gum exudate dispersions. Food Hydrocolloids 32 (2): 440-446. https://doi.org/10.1016/j.foodhyd.2013.02.007.
Prajapati V. D., Jani G. K., Moradiya N. G., & Randeria N. P. (2013). Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydrate Polymers 92(2): 1685–1699. https://doi.org/10.1016/j.carbpol.2012.11.021
Rincón F., Clamens C., Beltrán O., Sanabria L. & Vásquez I (2020). Composición nutricional de la goma de semilla de Prosopis juliflora. Revista de la Facultad de Agronomía (LUZ). 37 (Supl1): 189-194. https://produccioncientificaluz.org/index.php/agronomia/article/view/33084
Rincón F., Sanabria L., Párraga-Alava C., Barre-Zambrano R. L., Macias-Andrade E.F. & Montesdeoca-Párraga R. (2018). Propiedades tensoactivas, contenido de metales tóxicos y de taninos del exudado gomoso de Sterculia apetala. Boletín del Centro de Investigaciones Biológicas 52: 113-123. https://produccioncientificaluz.org/index.php/boletin/article/view/30008.
Sharma A., Pravin R., Bhushette U. & Annapure S. (2021). Physicochemical and rheological properties of Acacia Catechu exudate gum. Carbohydrate Polymer Technologies and Applications 2: 1001-1027. https://doi.org/10.1016/j.carpta.2021.100127.
Vasile F. E., Martínez M. J., Ruiz-Henestrosa V. M. P., Judis M. A. & Mazzobre M. F. (2016). Physicochemical, interfacial and emulsifying properties of a non-conventional exudate gum (Prosopis alba) in comparison with gum arabic. Food Hydrocolloids 56: 245–253. https://doi.org/10.1016/j.foodhyd.2015.12.016
Vasile F. E., Romero A. M., Judis M. A., Mattalloni M., Virgolini M. B. & Mazzobre M. F. (2019). Phenolics composition, antioxidant properties and toxicological assessment of Prosopis alba exudate gum. Food Chemistry 285: 369–379. https://doi.org/10.1016/j.foodchem.2019.02.003.
Williams P. A. & Phillips G. O. (2021). Introduction to food hydrocolloids. In G. O. Phillips, P. A. Williams Handbook of hydrocolloids (Third Edition). Elsevier 3-26. https://doi.org/10.1016/B978-0-12-820104-6.00017-6.
Wu Y., Cui W., Eskin N. A. M. & Goff H. D. (2009). An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Research International 42: 1141-1146. https://doi.org/10.1016/j.foodres.2009.05.015.
Copyright (c) 2023 Fernando Rincón-Acosta, Miryam Elizabeth Félix López, Ernesto Antonio Hurtado, Rocío Guerrero-Castillo, Olga Beltrán
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.