Phenotypic and symbiotic characterization of bacteria nodulating Genista saharae in the arid region of Algeria

  • Manel Djouama Department of Nature and Life Sciences, University Mohamed Khider, BP 145 RP, Biskra 07000, Algeria. Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la vie, Université de Bejaia,06000 Bejaia, Algeria https://orcid.org/0009-0009-5073-8322
  • Abdelhamid Foughalia Biotechnology Laboratory, Scientific and Technical Research Center on Arid Regions. (CRSTRA.Biskra), Algeria. https://orcid.org/0000-0002-4358-0434
  • Farida Boulila Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la vie, Université de Bejaia,06000 Bejaia, Algeria. https://orcid.org/0000-0002-1968-7610
  • Adel Chala Laboratory of Applied Mathematics. University of Mohemed Khider. P O Box 145, Biskra 07000, Algeria. https://orcid.org/0000-0003-3107-8399
Keywords: rhizobia, morpho-physiological, biochemical characterization

Abstract

Twenty bacterial strains had been isolated from root nodules of Genista saharae that grew wild in Biskra and El Oued city (Northeastern Algerian Sahara). This study focused on obtaining isolates of legume nodule bacteria (LNB) from the plant G. saharae and evaluated their effectiveness in forming a symbiotic relationship with the legume species Vigna unguiculata through cross-inoculation. Additionally, the study aimed to identify the successful cross-inoculation group of LNB strains based on their phenotypic characteristics. The growth capacity of isolates under varying salinity conditions [NaCl] and pH levels was investigated using a spectrophotometer (96-microplate reader). The API 20NE and API 20E systems were used to identify the biochemical characteristics of the isolates. In addition, the rhizospheric soil samples from the two study sites were analyzed using standard analytical techniques of soil. All isolates established effective symbioses with Vigna unguiculata, were Gram-negative rods, and were fast-growing. The optimal growth temperature was between 28 °C and 37 °C; some isolates were thermophiles and specifically withstood extreme heat between 45-50 °C. Furthermore, they demonstrated a wide tolerance range to pH (5–10) with salt tolerance ranging from 100 mM to 500 mM. Biochemical results revealed that the isolates assimilated various sources of carbon and nitrogen and displayed numerous enzyme activities. Physicochemical analysis revealed that all the soils were deficient in nutrients and had an alkaline pH. This study enabled us to identify the effective stress-tolerant strains, which could be used in the future to inoculate plants for environmental applications.

Downloads

Download data is not yet available.

References

Ahnia, H., Bourebaba, Y., Durán, D., Boulila, F., Palacios, J. M., Rey, L., Ruiz-Argüeso, T., Boulila, A., & Imperial, J. (2018). Bradyrhizobium algeriense sp. nov., a novel species isolated from effective nodules of Retama sphaerocarpa from Northeastern Algeria. Systematic and Applied Microbiology, 41(4), 333-339. https://doi.org/10.1016/j.syapm.2018.03.004
Aubert, G. (1978). Méthodes d'analyses des sols. Centre national de documentation pédagogique,Centre régional de Documentation Pédagogique, CRDP Marseille, 191 p. https://search.worldcat.org/fr/title/methode-danalyses-des-sols-documents-de-travail/oclc/461689985
Bordeleau, L., & Prévost, D. (1994). Nodulation and nitrogen fixation in extreme environments. Plant and Soil, 161, 115-125. https://doi.org/10.1007/BF02183092
BioMérieux. (S.d.). API 20NE.Systéme d’identification des bacilles a Gram négatif non Enterobactérie e non fastidieux. https://microbiologiemedicale.fr/wp-content/uploads/2019/02/API-20-NE.pdf
BioMérieux. (S.d.). API 20E. Systéme d’identification des Enterobacteriaceae et autres bacilles à Gram négatif non fastidieux. https://microbiologiemedicale.fr/wp-content/uploads/2019/02/Fiche-technique-API-20E.pdf
Boudehouche, W., Parker, M. A., & Boulila, F. (2020). Relationships of Bradyrhizobium strains nodulating three Algerian Genista species. Systematic and Applied Microbiology, 43(3), 126074. https://doi.org/10.1016/j.syapm.2020.126074
Boulila, F., Depret, G., Boulila, A., Belhadi, Dj., Benallaoua, S., & Laguerre, G. (2009). Retama species growing in different ecological–climatic areas of northeastern Algeria have a narrow range of rhizobia that form a novel phylogenetic clade within the Bradyrhizobium genus. Systematic and Applied Microbiology, 32(4), 245-255. https://doi.org/10.1016/j.syapm.2009.01.005
Cardoso, D., Pennington, R. T., de Queiroz, L. P., Boatwright, J. S., Van Wyk, B.-E., Wojciechowski, M., & Lavin, M. (2013). Reconstructing the deep-branching relationships of the papilionoid legumes. South African Journal of Botany, 89, 58-75. https://doi.org/10.1016/j.sajb.2013.05.001
Chaïch, K., Bekki, A., Bouras, N., Holtz, M. D., Soussou, S., Mauré, L., Brunel, B., de Lajudie, P., & Cleyet-Marel, J. C. (2017). Rhizobial diversity associated with the spontaneous legume Genista saharae in the northeastern Algerian Sahara. Symbiosis, 71, 111-120. https://doi.org/10.1007/s13199-016-0414-y
Dekak, A., Chabi, R., Menasria, T., & Benhizia, Y. (2018). Phenotypic characterization of rhizobia nodulating legumes Genista microcephala and Argyrolobium uniflorum growing under arid conditions. Journal of Advanced Research, 14, 35-42. https://doi.org/10.1016/j.jare.2018.06.001
Downie, J. A. (2005). Legume haemoglobins: symbiotic nitrogen fixation needs bloody nodules. Current Biology, 15(6), R196-R198. DOI: 10.1016/j.cub.2005.03.006
González‐Andrés, F., & Ortiz, J. M. (1998). Biodiversity of rhizobia nodulating Genista monspessulana and Genista linifolia in Spain. New Zealand Journal of Agricultural Research, 41(4), 585-594. https://doi.org/10.1080/00288233.1998.9513342
Hawkins, J. P., Geddes, B. A., & Oresnik, I. J. (2017). Succinoglycan production contributes to acidic pH tolerance in Sinorhizobium meliloti Rm1021. Molecular Plant-Microbe Interactions, 30(12), 1009-1019. https://doi.org/10.1094/MPMI-07-17-0176-R
Lindström, K., & Lehtomäki, S. (1988). Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. (Galega) compared with other fast-growing rhizobia. FEMS Microbiology Letters, 50(2-3), 277-287. https://doi.org/10.1111/j.1574-6968.1988.tb02951.x
Mahdhi, M., Nzoué, A., Gueye, F., Merabet, C., De Lajudie, P., & Mars, M. (2007). Phenotypic and genotypic diversity of Genista saharae microsymbionts from the infra‐arid region of Tunisia. Letters in Applied Microbiology, 45(6), 604-609. https://doi.org/10.1111/j.1472-765X.2007.02233.x
Ma, Y., & Chen, R. (2021). Nitrogen and phosphorus signaling and transport during legume–rhizobium symbiosis. Frontiers in Plant Science, 12, 683601. https://doi.org/10.3389/fpls.2021.683601
Maillet, F., Fournier, J., Mendis, H. C., Tadege, M., Wen, J., Ratet, P., Mysore, K. S., Gough, C., & Jones, K. M. (2020). Sinorhizobium meliloti succinylated high‐molecular‐weight succinoglycan and the Medicago truncatula LysM receptor‐like kinase MtLYK10 participate independently in symbiotic infection. The Plant Journal, 102(2), 311-326. https://doi.org/10.1111/tpj.14625
Mathieu, C., Pieltain, F., & Jeanroy, E. (2003). Analyse chimique des sols: Méthodes choisies. Tec & doc. Lavoisier, Paris, 408 p.
Miller, K. J., & Wood, J. M. (1996). Osmoadaptation by rhizosphere bacteria. Annual Review of Microbiology, 50(1), 101-136. https://doi.org/10.1146/annurev.micro.50.1.101
Míguez-Montero, M. A., Valentine, A., & Pérez-Fernández, M. A. (2020). Regulatory effect of phosphorus and nitrogen on nodulation and plant performance of eguminous shrubs. AoB Plants, 12(1), plz047.https://doi.org/10.1093/aobpla/plz047
Michiels, J., Verreth, C., & Vanderleyden, J. (1994). Effects of temperature stress on bean-nodulating Rhizobium strains. Applied and Environmental Microbiology, 60 (4), 1206-1212. https://doi.org/10.1128/aem.60.4.1206-1212.1994
Pongslip, N. (2012). Phenotypic and genotypic diversity of rhizobia. Bentham Science Publishers. DOI:10.2174/97816080546191120101
Somasegaran, P., & Hoben, H. J. (1985). Handbook for rhizobia: methods in legume-Rhizobium technology. Springer Science & Business Media. https://www.ctahr.hawaii.edu/bnf/Downloads/Training/Rhizobium%20technology/Title%20Page.PDF
Scianna, J., Logar, R., & Pick, T. (2007). Testing and interpreting salt affected soil for tree and shrub plantings. Natural Resources Conservation Service, Plant Materials Technical Note No. MT-61. https://www.nrcs.usda.gov/plantmaterials/mtpmctn7580.pdf
Tsyganov, V. E., & Tsyganova, A. V. (2020). Symbiotic regulatory genes controlling nodule development in Pisum sativum L. Plants, 9(12), 1741. https://doi.org/10.3390/plants9121741
Vincent, J. M. (1970). A Manual for the practical study of the root-nodule bacteria. https://doi.org/10.1002/jobm.19720120524
Zakhia, F., Jeder, H., Domergue, O., Willems, A., Cleyet-Marel, J. C., Gillis, M., ... & De Lajudie, P. (2004). Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Systematic and Applied Microbiology, 27(3), 380-395.
https://doi.org/10.1078/0723-2020-00273
Published
2024-11-04
How to Cite
Djouama, M., Foughalia, A., Boulila, F., & Chala, A. (2024). Phenotypic and symbiotic characterization of bacteria nodulating Genista saharae in the arid region of Algeria. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(4), e244238. Retrieved from https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/42896
Section
Crop Production