Biochemical response of Ocimum basilicum L. inoculated with Rhizophagus fasciculatus as a NaCl-stress mitigator

  • Yuneisy Agüero-Fernández Centro de Investigaciones Biológicas del Noroeste S.C., Avenida Instituto Politécnico Nacional No. 195. Colonia Playa Palo de Santa Rita Sur. La Paz, Baja California Sur, México. C.P. 23096. https://orcid.org/0000-0002-8723-404X
  • Bernardo Murillo-Amador Centro de Investigaciones Biológicas del Noroeste S.C., Avenida Instituto Politécnico Nacional No. 195. Colonia Playa Palo de Santa Rita Sur. La Paz, Baja California Sur, México. C.P. 23096. https://orcid.org/0000-0002-9489-4054
  • José Mazón-Suástegui Centro de Investigaciones Biológicas del Noroeste S.C., Avenida Instituto Politécnico Nacional No. 195. Colonia Playa Palo de Santa Rita Sur. La Paz, Baja California Sur, México. C.P. 23096. https://orcid.org/0000-0003-4074-1180
  • Alejandra Nieto-Garibay Centro de Investigaciones Biológicas del Noroeste S.C., Avenida Instituto Politécnico Nacional No. 195. Colonia Playa Palo de Santa Rita Sur. La Paz, Baja California Sur, México. C.P. 23096. https://orcid.org/0000-0003-4524-4693
  • Carlos Ojeda-Silvera Centro de Investigaciones Biológicas del Noroeste S.C., Avenida Instituto Politécnico Nacional No. 195. Colonia Playa Palo de Santa Rita Sur. La Paz, Baja California Sur, México. C.P. 23096. https://orcid.org/0000-0002-5815-0672
  • Daulemys Batista-Sánchez Centro de Investigaciones Biológicas del Noroeste S.C., Avenida Instituto Politécnico Nacional No. 195. Colonia Playa Palo de Santa Rita Sur. La Paz, Baja California Sur, México. C.P. 23096. https://orcid.org/0000-0003-0804-3171
Keywords: Arbuscular mycorrhizal fungi, Basil, Abiotic stress, Biochemistry

Abstract

Basil (Ocimum basilicum L.) is a medicinal and aromatic plant of commercial interest; it can be grown in salinized soils by applying a stress mitigator. The objective was to evaluate the biochemical response of two basil varieties inoculated with AMF Rhizophagus fasciculatus and appraise its usefulness as a NaCl-stress mitigator. A completely randomized design with a factorial arrangement, four replicates per treatment and four plants per replicate was used. Three factors were considered, (1) two basil varieties (Napoletano and Nufar); (2) three NaCl concentrations (0, 50 and 100 mM); and (3) R. fasciculatus inoculum absence or presence (0 and 10 g). The variables evaluated were a substrate chemical analysis; shoot (STP) and root (RTP) total protein content; shoot (SP) and root (RP) proline content; shoot (SGA) and root (RGA) glutathione peroxidase activity; spore count and colonization. The spore content was 50 to 70 spores per gram of inoculum. The STP and RTP were highest in both varieties in 0 mM with AMF and decreased in Napoletano in 100 mM. The SP and RP were highest in Nufar in 50 and 100 mM with AMF and lowest in Napoletano in 0 and 50 with AMF. The SGA and RGA were highest in Napoletano in 50 and 100 mM with AMF. The colonization was high; however, decreased as NaCl increased. These results suggest that inoculation with AMF has a positive effect to mitigate NaCl-stress and a biochemical benefit for basil plants.

Downloads

Download data is not yet available.

References

Abeer, H., Abd_Allah, E.F., Alqarawi, A.A., El-Didamony, G.S., Alwhibi, M., Egamberdieva, D. & Ahmad, P. (2014). Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pakistan Journal of Botany, 46, 2003-2013.
Abeer, H., Abd_Allah, E.F., Alqarawi, A.A. & Dilfuza, E. (2015). Induction of salt stress tolerance in cowpea (Vigna unguiculata L.) Walp. by arbuscular mycorrhizal fungi. Legume Research. 38 (5), 579-588. https://doi.org/10.18805/lr.v38i5.5933
Aggarwal, A., Kadian, N., Neetu, K., Tanwar, A. & Gupta, K.K. (2012). Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. Journal of Applied Natural Science, 4, 144-155. https://doi.org/10.31018/jans.v4i1.239
Agüero-Fernández, Y.M., Hernández-Montiel, L.G., Murillo-Amador, B., Nieto-Garibay, A., Troyo-Diéguez, E., Zulueta-Rodríguez, R. y Ojeda-Silvera, C.M. (2018). Arbuscular mycorrhizal fungi alleviate salt stress on sweet (Ocimum basilicum L.) seedlings. Tropical and Subtropical Agroecosystems. 21, 387-398.
Ahanger, M.A., Abeer, H.E.F., Abd, A. and Ahmad, P. (2014). Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad, P. and Rasool, S. (Eds.). Emerging Technologies and Management of Crop Stress Tolerance, 2, 69-95. https://doi.org/10.1016/B978-0-12-800875-1.00003-X
Al-Karaki, G. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51-54. https://doi.org/10.1007/s005720000055
Al-Karaki, G.N., McMichael, B. and Zak. J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14, 263-269. https://doi.org/10.1007/s00572-003-0265-2
Argentel, M.L., Fonseca, I., González, L.M. y López, D.R. (2012). Contenidos de prolina, glicina betaína y proteínas solubles totales en 12 variedades cubanas de trigo en condiciones salinas. Cultivos Tropicales, 31(4), 1-9.
Aroca, R., Ruiz-Lozano, J.M., Zamarreño, A.M., Paza, J.A., Garcia-Mina, J.M., Pozo, M.J. and Lopez-Raeza, J.A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170, 47-55. https://doi.org/10.1016/j.jplph.2012.08.020
Bates, L., Waldren, R.P. and Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Batista-Sánchez, D., Murillo-Amador, B., Nieto-Garibay, A., Alcaráz-Meléndez, L., Troyo-Diéguez, E., Hernández-Montiel, LG. y Ojeda-Silvera, C.M. (2017). Mitigación de NaCl por efecto de un bioestimulante en la germinación de Ocimum basilicum L. Terra Latinoamericana, 35 (4), 309-320.
Batista-Sánchez, D., Murillo-Amador, B., Nieto-Garibay, A., Alcaráz-Melendez, L., Troyo-Diéguez, E., Hernández-Montiel, L.G., Ojeda-Silvera, C.M., Mazón-Suástegui, J.M. y Agüero-Fernández, Y.M. (2019). Bioestimulante derivado de caña de azúcar mitiga los efectos del estrés por NaCl en Ocimum basilicum L. Ecosistemas y Recursos Agropecuarios, 6 (17), 297-306. https://doi.org/10.19136/era.a6n17.2069
Cartmill, A.D., Valdez, A.L.A., Cartmill, D.L., Volder, A. and Alarcon, A. (2013). Arbuscular mycorrhizal colonization does not alleviate sodium chloride-salinity stress in vinca [Catharanthus Roseus (L.) G. Don]. Journal of Plant Nutrition, 36 (1), 164-178. https://doi.org/10.1080/01904167.2012.738275
Castellanos, J.Z., Uvalle, B.J.X. y Aguilar, S.A. (2000). Manual de interpretación de análisis de suelo y agua. Universidad Autónoma de Chapingo. Estado de México. pp. 94-97.
Chelli-Chaabouni, A., Ben Mosbah, A., Maalej, M., Gargouri, K., Gargouri-Bouzid, R., Drira, N. (2010). In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. Environmental and Experimental Botany 69, 302-312. https://doi.org/10.1016/j.envexpbot.2010.05.010
Cheng, K.L. and Bray, R.H. (1951). Determination of calcium and magnesium in soil and plant material. Soil Science, 72, 449-458.
Daniels, B.A. and Skipper, H.D. (1982). Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck, N.C. (Ed). Methods and principles of mycorrhizal research. St. Paul, MN, The American Phytopathological Society. pp. 29-36.
Feitosa de Lacerda, C., Cambraia, J., Oliva Cano, M.A. and Ruiz, H.A. (2001). Plant growth and solute accumulation and distribution in two sorghum genotypes under NaCl stress. Brazilian Journal of Plant Physiology, 13, 270-284.
Folhé, L. and Günzler, W.A. (1984). Assays for glutahione peroxidase. In: Parker, L. (Ed.). Methods in enzymology, Vol. 105: Oxygen radicail in biological systems. Academic Press Inc. San Diego, USA. 120 p. https://doi.org/10.1016/S0076-6879(84)05015-1
García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía. Universidad Nacional Autónoma de México, México. 98 p. http://www.librosoa.unam.mx/handle/123456789/1372
Gloria, M.M., Arias, L. y Rivera, R. (2010). Selección de las cepas de hongos micorrízicos arbusculares (HMA) más efectivas para la Canavalia ensiformis cultivada en suelo ferralítico rojo. Cultivos Tropicales, 31 (1), 27-31.
González, L.M., Argentel, L., Zaldívar, N. y Ramírez, R. (2005). Efecto de la sequía simulada con PEG-6000 sobre la germinación y el crecimiento de las plántulas de dos variedades de trigo. Cultivos Tropicales, 26 (4), 45-49.
Jackson, M.L. (1958). Soil Chemical analysis. Prentice-Hall, Inc., Englewood. Cliffs, N.J. USA. pp. 66-81.
Jackson, M.L. (1976). Análisis Químico de Suelos. Ediciones Omega, S.A., Barcelona, España. pp. 283-301.
Juárez-Rosete, C.R., Aguilar-Castillo, J.A., Juárez-Rosete, M.E., Bugarín-Montoya, R., Juárez-López, P. y Cruz-Crespo, E. (2013). Hierbas aromáticas y medicinales en méxico: tradición e innovación. Revista Bio Ciencias, 2 (3), 119-129. http://dspace.uan.mx:8080/jspui/handle/123456789/731
Kumar, A., Sharma, S. and Mishra, S. (2010). Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of (Jatropha curcas L.). Journal of Plant Growth Regulation, 29, 3, 297-306. https://doi.org/10.1007/s00344-009-9136-1
Larrinaga-Arce, J.A. (2014). Evaluación de la respuesta de albahaca (Ocimun basilicum L.) cv. Nufar al estrés salino en dos cultivos hidropónicos orgánicos. Tesis de Maestría en Ciencias. Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. México. 80 p. http://dspace.cibnor.mx:8080/handle/123456789/436
Latef, A.A.H.A. and Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127 (3), 228-233. https://doi.org/10.1016/j.scienta.2010.09.020
Little, T.M. y Hills, F.J. (1989). Métodos estadísticos para la investigación en la agricultura. México. Edit. Trillas. 270 p.
Masarovičová, E. & Králóvá K. (2007). Medicinal plants: Past, Nowadays, Future. Acta Horticulturae, 749, 19-27. 10.17660/ActaHortic.2007.749.1
Mazón-Suástegui, J.M., Murillo-Amador, B., Batista-Sánchez, D., Agüero-Fernández, Y.M., García-Bernal, M. y Ojeda-Silvera, C.M. (2018). Natrum muriaticum como atenuante de la salinidad (NaCl) en albahaca (Ocimum basilicum L.). Nova Scientia, 10 (21), 120-136. https://doi.org/10.21640/ns.v10i21.1423
Medina-García, L.R. (2016). La agricultura, la salinidad y los hongos micorrízicos arbusculares꞉ una necesidad, un problema y una alternativa. Cultivos Tropicales, 37 (3) 42-49. http://dx.doi.org/10.13140/RG.2.1.1117.9765
Mollasadeghi, V., Valizadeh, M., Reza, S.R. and Imani, A.A. (2011). Evaluation of end drought tolerance of 12 wheat genotypes by stress indices. World Applied Sciences Journal, 13 (3), 545-551.
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Porcel, R., Redondo, S., Mateos, E., Aroca, R., García, R. and Ruiz, J.M. (2015). Arbuscular mycorrhizal simbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of Plant Physiology, 185, 75-83. https://doi.org/10.1016/j.jplph.2015.07.006
Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
Rivera, R., Fernández, F., Hernández, A., Martín, J.R. y Fernández, K. (2003). El manejo efectivo de la simbiosis micorrízica, una vía hacia la agricultura sostenible. Estudio de caso: El Caribe. Editorial Agustín García Marrero. La Habana, Cuba. 166 p.
Rojas-Martínez, L.E. (2014). Respuesta del cultivo de pimentón (Capsicum annuum L.) a la inoculación con Glomus manihotis y Acaulospora lacunosa en suelo con niveles alto de fósforo. Respuestas, 19 (1), 27-38.
Samperio, R.G. (1997). Hidroponía Básica. Editorial Diana. 176 p.
Servicio de Información Agroalimentaria y Pesquera-SIAP. (2021). Consulted 25/11/2021. Available: https://nube.siap.gob.mx/cierreagricola/.
Shamshiri, M.H. and Fattahi, M. (2014). Evaluation of two biochemical markers for salt stress in three pistachio rootstocks inoculated with arbuscular mycorrhiza (Glomus mosseae). Journal of Stress Physiology & Biochemistry, 10 (1), 335-346.
Shekoofeh, E., Sepideh, H. and Roya, R. (2012). Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. African Journal of Biotechnology, 11 (9), 2223-2235. 10.5897/AJB11.1672
StatSoft. (2011). Statistica. System Reference. StatSoft, Inc., Tulsa, Oklahoma, USA. 1098 p.
Steel, G.D.R. y Torrie, J.H. (1995). Bioestadística. Principios y procedimientos. México. Edit. McGraw Hill. 2nd Edition. 622 p.
Terry-Alfonso, E. y Leyva-Galán, A. (2006). Evaluación agrobiológica de la coinoculación micorrizas-rizobacterias en tomate. Agronomía Costarricense, 30, 1, 65-73.
Verbruggen, E., Van der Heijden, M.G.A., Rillig, M.C. and Kiers, E.T. (2013). Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytologist, 197 (4), 1104-1109. https://doi.org/10.1111/j.1469-8137.2012.04348.x
Wu, Q.S., Zou, Y.N. and He, X.H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologia Plantarum, 32, 297-304. https://doi.org/10.1007/s11738-009-0407-z
Published
2022-11-24
How to Cite
Agüero-Fernández, Y., Murillo-Amador, B., Mazón-Suástegui, J., Nieto-Garibay, A., Ojeda-Silvera, C., & Batista-Sánchez, D. (2022). Biochemical response of Ocimum basilicum L. inoculated with Rhizophagus fasciculatus as a NaCl-stress mitigator. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(4), e223953. Retrieved from https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/39167
Section
Crop Production