Emergence capacity and seedlings early growth of four legumes in arid zones under NaCl-stress
Abstract
Legumes are used as fodder and green manures, because of fix nitrogen biologically. The objective of this study was to determine the emergence capacity and the early growth of four legume species treated with different NaCl-stress concentrations. The experiment was established in a completely randomized design with a factorial arrangement, where the first factor was the four legumes’ species (Vigna unguiculata L. Walp., Lablab purpureus (L.) Sweet, Clitoria ternatea L. and Canavalia ensiformis L. DC.) and the second factor was NaCl concentrations (0.25, 50, and 75 mM) with 16 treatments and four replications. The variables evaluated were emergence rate and percentage, stem and root length, fresh and dry weight of stem+leaves and root, stem and root length, stem diameter and the ratio of stems+leaves dry weight and roots dry weight (plant balance). The results showed that all variables expressed significant differences between species, NaCl and the species × NaCl interaction. A differential response between legumes to NaCl stress was observed. The most tolerant species to NaCl were Vigna unguiculata and Canavalia ensiformis showed a higher tolerance with respect to Lablab purpureus and Clitoria ternatea.
Downloads
References
Al-huraby, A.I. & Bafeel, S.O. (2022). The effect of salinity stress on the Phaseolus vulgaris L. plant. African Journal of Biological Sciences, 4,1, 94-107. doi: 10.33472/ AFJBS.4.1.2021.94-107.
Can-Chulim, A.A., Ramírez-Guerrero, L.G., Ortega-Escobar H.M., Cruz-Crespo, E., Flores-Román, D., Sánchez-Bernal E.I., & Madueño-Molina, A. (2014). Germinación y crecimiento de plántulas de Phaseolus vulgaris L. en condiciones de salinidad. Revista Mexicana de Ciencias Agrícolas, 5(5), 753-763. https://doi.org/10.29312/remexca.v5i5.898
Daniel, A.I., Fadaka, A.O., Gokul, A., Bakare, O.O., Aina, O., Fisher, S., Burt, A.F., Mavumengwana, V., Keyster, M., & Klein, A. (2022). Biofertilizer: The future of food security and food safety. Microorganisms, 10, 1220. https://doi.org/10.3390/ microorganisms10061220
Dehnavi, A.R., Zahedi, M., Ludwiczak, A., Cardenas-Perez, S., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of Sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10, 859. https://doi.org/10.3390/agronomy10060859
Deng, X., Ji, L., Wang, R., Liu, X., Yang, S., Guan, P., Wang, J. (2019). Response of seed germination and physiological mechanism of Vigna angularis and Dolichos lablab to salt stress. Chinese Journal of Eco-Agriculture, 27(8), 1218-1225. doi:10.13930/j.cnki.cjea.190227
Fatokun, K., Beckett, R.P., & Varghese, B. (2022). A comparison of water imbibition and controlled deterioration in five orthodox species. Agronomy, 12, 1486. https://doi.org/10.3390/ agronomy12071486
García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía de la Universidad Nacional Autónoma de México. Ciudad de México. 97 p. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1
Grigore, M.N. & Vicente, O. (2023). Wild halophytes: Tools for understanding salt tolerance mechanisms of plants and for adapting agriculture to climate change. Plants, 12, 221. https://doi.org/10.3390/ plants12020221
Gul, Z., Tang, Z.H., Arif, M., & Ye, Z. (2022). An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. Biology, 11, 597. https://doi.org/10.3390/ biology11040597
Hasanuzzaman, M., Zhou, M., & Shabala, S. (2023). How does stomatal density and residual transpiration contribute to osmotic stress tolerance? Plants, 12, 494. https://doi.org/10.3390/ plants12030494
Ibrahim, E.A.A. (2019). Fundamental Processes Involved in Seed Priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds). Priming and pretreatment of seeds and seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_4
Khan, M., Ali, S., Al Azzawi, T.N.I., Saqib, S., Ullah, F., Ayaz, A., & Zaman, W. (2023). The key roles of ROS and RNS as a signaling molecule in plant-microbe interactions. Antioxidants, 12, 268. https://doi.org/10.3390/ antiox12020268
Li, Y., Liang, Y., Liu, M., Zhang, Q., Wang, Z., Fan, J., Ruan, Y., Zhang, A., Dong, X., Yue, J., & Li. C. (2022). Genome-wide association studies provide insights into the genetic architecture of seed germination traits in maize. Frontiers in Plant Science, 13:930438. doi: 10.3389/fpls.2022.930438
Li, B., Tester, M., & Gilliham, M. (2017). Chloride on the move. Trends in Plant Science, 22, 3, 236-248, https://doi.org/10.1016/j.tplants.2016.12.004.
Little, T.M. y Hills, F.J. (1989). Métodos estadísticos para la investigación en la agricultura. México. Edit. Trillas. 270 p.
Maguire, J.D. (1962). Speed of germination-aid in selection and evaluation for seedling emergences and vigor. Crop Science, 2, 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Mathesius, U. (2022). Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. Journal of Plant Physiology, 276, 153765, https://doi.org/10.1016/j.jplph.2022.153765.
Mohanavelu, A., Naganna, S.R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11, 983. https://doi.org/10.3390/agriculture 11100983
Mubushar, M., El-Hendawy, S., Tahir, M.U., Alotaibi, M., Mohammed, N., Refay, Y., & Tola, E. (2022). Assessing the suitability of multivariate analysis for stress tolerance indices, biomass, and grain yield for detecting salt tolerance in advanced spring wheat lines irrigated with saline water under field conditions. Agronomy, 12, 3084. https://doi.org/ 10.3390/agronomy12123084
Muktadir, M.A., Adhikari, K.N., Merchant, A., Belachew, K.Y., Vandenberg, A., Stoddard, F.L., & Khazaei, H. (2020). Physiological and biochemical basis of faba bean breeding for drought adaptation- A Review. Agronomy, 10, 1345. https://doi.org/10.3390/agronomy10091345
Murillo-Amador, B., Yamada, S., Yamaguchi, T., Rueda-Puente, E.O. Ávila-Serrano, N.Y., García-Hernández, J.L., López-Aguilar, D.R., Troyo-Diéguez, E., & Nieto-Garibay, A. (2007). Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal Agronomy Crop Science, 193:413-421. doi.org/10.1111/j.1439-037X.2007.00273.x
Narejo, G.A., Mirbahar, A.A., Yasin, S., Sirohi, M.H., & Saeed R. (2023). Effect of hydro and KNO3 priming on seed germination of cotton (Gossypium hirsutum L.) under gnotobiotic conditions. Journal of Plant Growth Regulation, 42, 1592-1603. https://doi.org/10.1007/s00344-022-10644-y
Nachshon, U. (2018). Cropland soil salinization and associated hydrology: Trends, processes and examples. Water, 8, 1030. https://doi.org/10.3390/w10081030
Negacz, K., Malek, Ž., Vos, A.D., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203, 104775, https://doi.org/10.1016/j.jaridenv.2022.104775.
Praxedes, S.S.C., da Silva Sá, F.V., Neto, M.F., Loiola, A.T., Reges, L.B.L., Jales, G.D., & de Melo, A.S. (2020). Tolerance of seedlings traditional varieties of cowpea (Vigna unguiculata (L.) Walp.) to salt stress. Semina: Ciências Agrárias, Londrina, 41(5 suplemento 1), 1963-1974.
Ravelombola, W., Shi, A., Weng, Y., Mou, B., Motes, D., Clark, J., Chen, P., Srivastava, V., Quin, J., Dong, L., Yang, W., Bhattarai, G., & Sugihara, Y. 2018. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp.) at germination and seedling stages. Theoretical and Applied Genetics, 131, 79-91, https://doi.org/10.1007/s00122-017-2987-0
Ruiz-Ramírez, S., Valdés-Oyervides, A., Facio-Parra, F., y Arce-González, L. (2012). Efecto de diferentes niveles de salinidad en la germinación y vigor de semillas de cinco gramíneas forrajeras. Agraria, 9, 1, 7-13. https://revista.uaaan.edu.mx/
Shelden, M.C. & Munns, R. (2023). Crop root system plasticity for improved yields in saline soils. Frontiers in Plant Science, 14, 1120583. doi: 10.3389/fpls.2023.1120583Shel
TIBCO Software Inc. (2018). Statistica (data analysis software system), version 13. http://tibco.com.
Xu, J., Li, Y., Wang, S., Wang, Q., & Ding, J. (2020). Shear strength and mesoscopic character of undisturbed loess with sodium sulfate after dry-wet cycling. Bulletin Bulletin of Engineering Geology and the Environment, 79,1523-1541. https://doi.org/10.1007/s10064-019-01646-4
Copyright (c) 2023 Francisco Higinio Ruiz-Espinoza, Juan José Reyes-Perez, Beltrán-Morales Félix Alfredo, Bernardo Murillo-Amador, Juan Carlos Rodríguez-Ortiz, Pablo Misael Arce-Amézquita
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.