Identificación de las bacterias intestinales de la polilla de la cera mayor

Palabras clave: Galleria mellonella, plástico, secuencia ADN, microorganismos, Pseudomonas

Resumen

A nivel mundial la utilización de polímeros industriales de origen de combustibles fósiles es prácticamente inevitable debido a la diversidad de aplicaciones; sin embargo, los problemas medioambientales que esto genera han motivado la búsqueda de alternativas que permitan reducir el uso de estos, así como estrategias para el control mediante la degradación, con la participación de algunos agentes activos bio-organicos. Los insectos son de especial interés ya que algunas especies consumen plásticos y son posibles biodegradadores debido a la acción de bacterias de su tracto digestivo. Considerando estos antecedentes, este estudio tuvo como objetivo identificar bacterias presentes en el intestino de las larvas de la polilla de la cera (Galleria mellonella). Treinta larvas fueron sometidas a una dieta a base de espuma de poliestireno y treinta larvas a una dieta natural por un período de 7 días. Posteriormente, se tomaron las larvas para hacer el estudio del tracto gastrointestinal mediante PCR. Los resultados obtenidos, demostraron la presencia de células bacterianas de Carnobacterium maltaromaticum, Brevibacterium sandarakinum, Pseudomonas psychrophila, Pseudomonas sp., Providencia sp., Corynebacterium sp. Sin embargo, es necesario verificar la real acción en forma aislada de estos grupos de bacterias sobre la degradación efectiva de polímeros.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abrusci, C., Pablos, J., Corrales, T., López, J., González, A., Marín, A. & Catalina, F. (2011). Biodegradación por bacterias de filmes de polietileno fotodegradado. Efecto de aditivos pro-oxidantes. Revista de Plásticos Modernos: Ciencia y Tecnología de Polímeros, 660, 99-104. https://dialnet.unirioja.es/servlet/articulo?codigo=3749134.
Agudelo-Londoño, N., Torres-Taborda, M.M., Alvarez-López, C. y Vélez-Acosta, L.M. (2015). Bacteriocinas producidas por bacterias ácido lácticas y su aplicación en la industria de alimentos. Revista Alimentos Hoy, 23, 186-205. https://alimentoshoy.acta.org.co/index.php/hoy/article/viewFile/356/306
Brandon, A.M., Gao, S.H., Tian, R., Ning, D., Yang, S.S., Zhou, J., Wu, W.M. & Criddle, C.S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52, 6526-6533. doi: https://doi.org/10.1021/acs.est.8b02301
Bombelli, P., Howe, J. & Bertocchini, C. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8), 292-293. doi: https://doi.org/10.1016/j.cub.2017.02.060
Frías, C., Ize, I. & Gavilán, A. (2003). La situación de los envases de plástico en México. Gaceta Ecológica, 69, 67-82. https://www.redalyc.org/pdf/539/53906905.pdf
Geyer, R., Jambeck, J. & Lavender, K. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. DOI: 10.1126/sciadv.1700782
Ghatge, S., Yang, Y., Ahn, J.H. & Hur, H.G. (2020). Biodegradation of polyethylene: a brief review. Applied Biological Chemistry, 63, 27. doi: https://doi.org/10.1186/s13765-020-00511-3.
Hadad, D., Geresh, S. & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98, 1093-1100. doi: 10.1111/j.1365-2672.2005.02553.x
Huerta, L., Wanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., Van Der Ploeg, M., Besseling, E., Koelmans, A. & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestres (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50, 2685-2691. doi: https://doi.org/10.1021/acs.est.5b05478
Huerta, L., Wanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V. & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Science of The Total Environment, 624, 753-757. doi: https://doi.org/10.1016/j.scitotenv.2017.12.144
Kämpfer, P., Schäfer, J., Lodders, N. & Busse, H.J. (2010). Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment. International Journal of Systematic and Evolutionary Microbiology, 60, 909-913. doi: 10.1099/ijs.0.014100-0
Kim, H.R., Lee, H.M., Yu, H.C., Jeon, E., Lee, S., Li, J. & Kim, D.H. (2020). Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (Larvae of Zophobas atratus). Environmental Science & Technology, 54, (11):6987-6996. doi: 10.1021/acs.est.0c01495.
Kong, H. G., Kim, H. H., Chung, J. H., Jun, J. H., Lee, S., Kim, H. M., et al. (2019). The Galleria mellonella hologenome supports microbiota-independent metabolism of long-chain hydrocarbon beeswax. Cell Reports, 26, 2451–2464. doi: https://doi.org/10.1016/j.celrep.2019.02.018.
Kumar, S. & Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3(1), 462-473. doi: https://doi.org/10.1016/j.jece.2015.01.003
Leisner, J.J., Laursen, B.G., Djamel, H.P. & Dalgaard, P. (2007). Carnobacterium: positive and negative ejects in the environment and in foods. FEMS Microbiology Reviews, 31, 592-613. doi: 10.1111/j.1574-6976.2007.00080.x
Lewin, G.R., Marc, C.C., Horn, H.A., Mcdonald, B.R., Stankey, R.J., Fox, B.G. & Currie, C.R. (2016). Evolution and ecology of Actinobacteria and their bioenergy applications. Annual Review of Microbiology, 70, 235-254. doi: 10.1146/annurev-micro-102215-095748.
Lou, Y., Ekaterina, P., Yang S.S., Lu, B., Liu, B., Ren, N., Corvini, P., & Xing, D. (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environmental Science & Technology, 54, 2821-2831. doi:https://dx.doi.org/10.1021/acs.est.9b07044
Mason, C.J., Clair, A., Peiffer, M., Gomez, E., Jones, A.G., Felton, G.W. & Hoover, K. (2020). Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE, 15(3), e0229848. doi: 10.1371/journal.pone.0229848
Mukherjee, K., Raju, R., Fischer, R. & Vilcinskas, A. (2013). Galleria mellonella as a model host to study gut microbe homeostasis and brain infection by the human pathogen Listeria monocytogenes. Advances in Biochemical Engineering / Biotechnology, 135, 27-39. doi: 10.1007/10_2013_203
Ng, E., Huerta, E., Eldridge, S., Johnston, P., Hu, H., Geissen, V. & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 627, 1377-1388. doi: https://doi.org/10.1016/j.scitotenv.2018.01.341
Ren, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B., Wang, J., Zhang, Y. & Zhang W. (2019). Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of wax moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16, 1941. doi:10.3390/ijerph16111941.
Rizzi, A., Crotti, E., Borruso, L., Jucker, C., Lupi, D., Colombo, M. & Daffonchio, D. (2013). Characterization of the bacterial community associated with larvae and adults of Anoplophora chinensis collected in Italy by culture and culture-independent methods. BioMed Research International, 2013, 420287. doi: 10.1155/2013/420287
Ruiz, J., Vilanova-Cuevas, B., Alvarez, A., Martín, E., Malizia, A., Galindo-Cardona, A., de Cristóbal, R., Occhionero, M., Chalup, A., Monmany-Garzía, A. & Godoy-Vitorino, F. (2022). The bacterial and fungal gut microbiota of the greater wax moth, Galleria mellonella L. consuming polyethylene and polystyrene. Frontiers in Microbiology, 13, 918861. 861. doi: 10.3389/fmicb.2022.918861
Santo, M., Weitsman, R. & Silvan, A. (2013). The role of the copper-binding enzyme – laccase - in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation, 84; 204-210. https://doi.org/10.1016/j.ibiod.2012.03.001
Shannon, A.L., Attwood, G., Hopcroft, D.H. & Christeller,J.T. (2001). Characterization of lactic acid bacteria in the larval midgut of the keratinophagous lepidopteran, Hofmannophila pseudospretella. Letters in Applied Microbiology, 32, 36-41. doi: 10.1046/j.1472-765x.2001.00854.x
Silva, A.B., Bastos, A.S., Justino, C., Da Costa, J., Duarte, A. & Rocha-Santos, T. (2018). Microplastics in the environment: Challenges in analytical chemistry, A review. Analytica Chimica Acta, 1017; 1-19. doi: https://doi.org/10.1016/j.aca.2018.02.043
Suzuki, M., Taylor, L. & Delong, E. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-Nuclease assays. Applied and Environmental Microbiology, 66(11), 4605-4614. doi: https://doi.org/10.1128/AEM.66.11.4605-4614.2000
Torres De La Cruz, M., Cortez, H., Ortiz, C., Cappello, S. y Pérez De La Cruz, M. (2014). Cepas monospóricas de Metarhizium anisopliae y su patogenicidad sobre Galleria mellonella en Tabasco, México. Revista Mexicana de Ciencias Pecuarias, 5(2), 171-180. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242014000200004
Wickramasinghe, N.N., Ravensdale, J., Coorey, R., Chandry, S.P. & Dykes, G.A. (2019). The predominance of psychrotrophic Pseudomonads on aerobically stored chilled red meat. Comprehensive Reviews in Food Science and Food Safety, 18; 1622-1635. doi: https://doi.org/10.1111/1541-4337.12483
Wilkes, R.A. & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of Applied Microbiology, 123(3); 582-593. doi: 10.1111/jam.13472
Yang, S.S., Brandon, A., Flanagan, J., Yang, J., Ning, D., Cai, S., Fan, H., Wang, Z., Ren, J., Benbow, E., Ren, N., Wamouth, R., Zhou, J., Criddle, C. & Wu, W. (2017). Biodegradation of de polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor L.): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979-989. doi: 10.1016/j.chemosphere.2017.10.117
Yang, Y., Yang, J., Wu, W., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science and Technology, 49(20), 12087-12093. doi: https://doi.org/10.1021/acs.est.5b02663
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196-1199. doi: 10.1126/science.aad6359
Larva of Galleria mellonella, an insect with the potential to consume styrofoam due to the action of bacteria in its polystyrene foam due to the action of bacteria in its digestive tract
Publicado
2022-12-26
Cómo citar
Betancourt, O., Araneda, X., Pesenti, H., & Anabalón, L. (2022). Identificación de las bacterias intestinales de la polilla de la cera mayor. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 40(1), e234005. Recuperado a partir de https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/39417
Sección
Producción Vegetal