Evaluación de cepas Antárticas de Bacillus sp. como bacterias promotoras del crecimiento vegetal
Resumen
En agricultura, se emplean microorganismos eficientes, entre ellos las bacterias promotoras de crecimiento vegetal. El propósito de este trabajo fue determinar, in vitro, el mecanismo de acción en cepas de Bacillus sp. aisladas de la Antártida. Se analizaron los siguientes aspectos: prueba de catalasa y de hemólisis, tinción de Gram, solubilización de fosfato, crecimiento sin fuente de nitrógeno, producción de sideróforo, y supervivencia a diferentes valores de pH, NaCl y temperatura, con lo cual se constató la plasticidad ecológica y adaptación de estas cepas en ambientes distintos al de su origen. De acuerdo con las características deseables, se escogieron las cepas T5, GB-70 y B-6 que se añadieron a dos sustratos: arcilla y mezcla arcilla-compost, los cuales fueron esterilizados y depositados en botellas de vidrio con capacidad de 200 mL, colocando una semilla de maíz en cada una. Transcurridas dos semanas, se evaluó: la longitud de raíz (LR), la altura de la plántula (AP) y el diámetro del talluelo (DT). El efecto simple de las cepas como variables independientes y su interacción, no incidieron significativamente sobre las variables respuestas evaluadas, registrándose los siguientes promedios: 12,84 cm (LR), 15,28 cm (AP), y 2,26 cm (DT). Considerando el sustrato, el Compost + Arcilla mostró diferencias significativas (p<0,05) en las características LR y DT de las plántulas, con medias de 14,44 y 2,38 cm, respectivamente. Los mecanismos de acción observados distinguen cepas prometedoras que podrían validarse a nivel de campo en sistemas de producción agrícola cuando se inoculan en fertilizantes orgánicos.
Descargas
Citas
Acurio Vásconez, R.D., Mamarandi Mossot, J. E., Ojeda Shagñay, A.G., Tenorio, E.M., Chiluisa Utreras, V.P., Vaca Suquillo, I. D. L. Á. (2020). Evaluación de Bacillus spp como rizobacterias promotoras del crecimiento vegetal (RPCV) en brócoli (Brassica oleracea var. italica) y lechuga (Lactuca sativa). Revista Ciencia y Tecnología Agropecuaria, 21(3), 1-16. https://doi.org/10.21930/rcta.vol21_num3_art:1465
Afzal, A., & Bano, A. (2008). Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). International Journal of Agriculture and Biology. 10(1), 85 https://www.fspublishers.org/Issue.php?y=2008&v_no=10&categoryID=39-88.
Aguado–Santacruz, G.A., Moreno–Gómez, B., Jiménez–Francisco, B., García-Moya, E., & Preciado-Ortiz, R.E. (2012). Impacto de los sideróforos microbianos y fitosidéforos en la asimilación de hierro por las plantas: una síntesis. Revista Fitotecnia Mexicana, 35(1), 9-21. https://revistafitotecniamexicana.org/documentos/35-1/2a.pdf.
Alexander, D. Z., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12(1), 39-45. https://link.springer.com/article/10.1007/bf00369386.
Bacon, C., & Hinton, D. (2011). In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis. Canadian Journal of Microbiology, 57(6), 485-492. https://doi.org/10.1139/w11-031.
Bashan, Y., Kamnev, A.A., & de-Bashan, L.E. (2013). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils, 49, 465–479. https://doi.org/10.1007/s00374-012-0737-7.
Batista, B.D., Bonatelli, M.L., & Quecine, M.C. (2021). Fast Screening of Bacteria for Plant Growth Promoting Traits. In Carvalhais, L.C., Dennis, P.G. (eds) The Plant Microbiome. Methods in Molecular Biology, 2232. Humana, New York. https://doi.org/10.1007/978-1-0716-1040-4_7.
Calvo, P., & Zúñiga, D. (2010). Caracterización fisiológica de cepas de Bacillus spp aisladas de la rizósfera de papa (Solanum tuberosum). Ecología aplicada, 9(1), 31-39. https://doi.org/10.21704/rea.v9i1-2.393.
Castro-Severyn, J., Pardo-Esté, C., Mendez, K. N., Fortt. J., Marquez, S, Molina, F., Castro-Nallar, E., Remonsellez, F., & Saavedra, C. P. (2021). Living to the high extreme: unraveling the composition, structure, and functional insights of bacterial communities thriving in the arsenic-rich Salar de Huasco altiplanic ecosystem. Microbiology Spectrum, 9(1), e0044421. https://doi.org/10.1128/Spectrum.00444-21.
Chattopadhyay, M. K. (2006). Mechanism of bacterial adaptation to low temperature. Journal of Biosciences, 31(1), 157–165. https://doi.org/10.1007/BF02705244.
Davis, K.E., Joseph, S.J., & Janssen, P.H. (2005). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied Environmental Microbiology, 71(2), 826-34. https://doi.org/10.1128/AEM.71.2.826-834.2005.
Delgado-Baquerizo, M., Oliverio, A., Brewer, T., Benavent-González, A., Eldridge, D., Bardgett, R., Maestre, F., Singh, B., & Fierer, N. (2018). A global atlas of the dominant bacteria found in soil. Science, 359(6373), 320-325. https://www.science.org/doi/10.1126/science.aap9516.
Di Rienzo, J., Balzarini, M., Gonzales, L., Casanoves, F., Tablada, M. y Robledo, C. (2010). InfoStat versión 2018 [Programa]. Grupo InfoStat. https://www.infostat.com.ar/index.php?mod=page&id=34.
Do Amaral, F. P., Tuleski, T. R., Pankievicz, V. C., Melnyk, R. A., Arkin, A. P., Griffitts, J., Tadra-Sfeir, M. Z., Maltempi de Souza, E., Deutschbauer, A., Monteiro, R. A., & Stacey, G. (2020). Diverse bacterial genes modulate plant root association by beneficial bacteria. mBio, 11(6). https://doi.org/10.1128/mbio.03078-20.
Fasusi, O. A., & Babalola, O. O. (2021). The multifaceted plant-beneficial rhizobacteria toward agricultural sustainability. Plant Protection Science, 57(2), 95-111. https://doi.org/10.17221/130/2020-PPS.
Forbes, B., Sahm, D., & Weissfeld, A. (2007). Bailey & Scott’s. Diagnostic microbiology. Mosby, Elsevier.
Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., & Liu, L. (2018). Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic Engineering, 50, 109-121, https://doi.org/10.1016/j.ymben.2018.05.006.
Guzmán, A., Zambrano, D., Rivera, R., Rondón, A., Laurencio, M., Pérez, M., & León, R. (2015). Aislamiento y selección de bacterias autóctonas de Manabí-Ecuador con actividad celulolítica. Cultivos Tropicales, 36(1), 7-16. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/934/pdf.
Gyaneshwar, P., Naresh, G., Kumar, L., Parekh, J., & Poole, P. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245(1), 83-93. https://doi.org/10.1023/A:1020663916259.
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401.
Hu, S., Li, Y., Wang, B., Yin, L., & Jia, X. (2022). Effects of NaCl Concentration on the Behavior of Vibrio brasiliensis and Transcriptome Analysis. Foods, 11(6), 840. https://doi.org/10.3390/foods11060840.
Ikenebomeh, M.J. (1989). The influence of salt and temperature on the natural fermentation of African locust bean. International Journal of Food Microbiology, 8(2), 133-9. https://doi.org/10.1016/0168-1605(89)90067-6.
Joshi, S., Gangola, S., Bhandari, G., Bhandari, N. S., Nainwal, D., Rani, A., Malik, S., & Slama, P. (2023). Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Frontiers in Microbiology, 14, 1229828. https://doi.org/10.3389/fmicb.2023.1229828 .
Kudinova, A. G., Dolgih, A. V., Mergelov, N. S., Shorkunov, I. G., Maslova, O. A., & Petrova, M. A. (2021). The abundance and taxonomic diversity of filterable forms of bacteria during succession in the soils of Antarctica (Bunger hills). Microorganisms, 9(8), 1728. https://doi.org/10.3390/microorganisms9081728.
Lara, C., Esquivel, L., & Negrete, J. (2011). Bacterias nativas solubilizadores de fosfatos para incrementar los cultivos en el departamento de Córdoba-Colombia. Biotecnología en el sector agropecuario y agroindustrial, 9(2), 114-120. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/789/413.
Liu, F. P., Liu, H. Q., Zhou, H. L., Dong, Z. G., Bai, X. H., Bai, P., & Qiao, J. J. (2016). Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. Biology and Fertility of Soils, 50(6), 927–937. https://doi.org/10.1007/s00374-014-0913-z.
López-Valenzuela, B. E., Armenta-Bojórquez, A. D., Hernández-Verdugo, S., Apodaca-Sánchez M. A., Samaniego-Gaxiola, J. A., & Valdez-Ortiz, A. (2019). Trichoderma spp. y Bacillus spp como promotores del crecimiento en maíz (Zea mays L.). Phyton, 88(1), 37-46. https://doi.org/10.32604/phyton.2019.04621.
Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of Action of Plant Growth Promoting Bacteria. World Journal of Microbiology and Biotechnology, 33, 197. https://doi.org/10.1007/s11274-017-2364-9.
Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy, 9(11), 712. https://doi.org/10.3389/fpls.2022.875774.
Orozco-Mozqueda, M., Flores, A., Rojas-Sánchez, B., Urtis-Flores, C., Morales-Cedeño, L., Valencia-Marín, M., Chávez-Ávila, S., Rojas-Solís, D., & Santoyo, G. (2021). Plant Growth-Promoting Bacteria as Bioinoculants: Attributes and Challenges for Sustainable Crop Improvement. Agronomy. 11(6), 1167. https://doi.org/10.3390/agronomy11061167.
Pincay, M. (2022). Diversidad microbiana presente en agua residual proveniente de industria atunera. Revista Espamciencia, 13(1), 70-76. https://doi.org/10.51260/revista_espamciencia.v13i1.312.
Qurashi, A.W., & Sabri, A.N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43(3), 1183-91. https://doi.org/10.1590/S1517-838220120003000046.
Ramírez, M., Roveda, G., Bonilla, R., Cabra, L., Peñaranda, A., López, M., & Díaz, C. A. (2008). Uso y manejo de biofertilizantes en el cultivo de la uchuva. Corporación Colombiana de Investigación Agropecuaria. http://hdl.handle.net/20.500.12324/12852.
Ratón, T., Portuondo, I., Salas, D., Ramos, N., & Giro, Z. (2005). Aislamiento de cepas del género Bacillus sp con potencialidades para la bioprotección y la estimulación del crecimiento vegetal. Revista Cubana de Química, 17(1), 189-195. https://cubanaquimica.uo.edu.cu/index.php/cq.
Rizvi, A., Ahmed, B., Khan, M. S., Umar, S., & Lee, J. (2021). Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms, 9(12), 2451. https://doi.org/10.3390/microorganisms9122451.
Santi, C., Bogusz, D., & Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111(5), 743-767. https://doi.org/10.1093/aob/mct048.
Tassadaq, H., Aneela, R., Shehzad, M., Iftikhar, A., Jafar, K., Veronique, E. H., Kim, K. Y., & Muhammad, A. (2013). Biochemical characterization and identification of bacterial strains isolated from drinking water sources of Kohat, Pakistan. African Journal of Microbiology Research, 7(16), 1579–1590. https://doi.org/10.5897/AJMR12.2204.
Teng, Z., Chen, Z., Zhang, Q., Yao, Y., Song, M., & Li, M. (2018). Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China. Environmental Science and Pollution Research, 26(33), 33976-33987. https://doi.org/10.1007/s11356-018-2955-5.
Ulrich, D.E., Sevanto, S., & Ryan, M. (2019). Las interacciones planta-microbio antes de la sequía influyen en las respuestas fisiológicas de la planta a la sequía severa posterior. Informe científico, 9(1), 249. https://www.nature.com/articles/s41598-018-36971-3.
Valdivieso, S., Cedeño, G., & Guanoluisa, A. (2021). Análisis Estadístico de los datos climáticos históricos de la ESPAM MFL. https://www.manabi.gob.ec/wp-content/uploads/2021/11/1VF_Analisis-Estadistico-de-los-datos-climaticos-historicos-de-la-ESPAM-MFL.pdf.
Villarreal, M., Villa, E., Cira, L., Estrada, M., Parra, F., & Santos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, 36(1), 95-130. https://www.rmf.smf.org.mx/ojs/index.php/RMF/article/view/100.
Xiao, F., Li, Y., Zhang, Y., Wang, H., Zhang, L., Ding, Z., Gu, Z., Xu, S., & Shi, G. (2020). Construction of a novel sugar alcohol-inducible expression system in Bacillus licheniformis. Applied Microbiology and Biotechnology, 104(12), 5409–5425. https://doi.org/10.1007/s00253-020-10618-8.
Yu, H., Wu, X., Zhang, G., Zhou, F., Harvey, P., Wang, L., Fan, S., Xie, X., Li, F., Zhou, H., Zhao, X., & Zhang, X. (2022). Identification of the phosphorus-solubilizing bacteria strain JP233 and its effects on soil phosphorus leaching loss and crop growth. Frontiers in Microbiology, 13, 892533. https://doi.org/10.3389/fmicb.2022.892533.
Zalma, S. A., & El-Sharoud, W. M. (2021). Diverse thermophilic Bacillus species with multiple biotechnological activities are associated within the Egyptian soil and compost samples. Science Progress, 104(4), 368504211055277. https://doi.org/10.1177/00368504211055277.

Derechos de autor 2024 Ángela Beatriz Zambrano-Solórzano, Ángel Monserrate Guzmán-Cedeño, María Fernanda Pincay Cantos, Jonathan Gerardo Chicaiza Intriago, Diego Efrén Zambrano Pazmiño

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.