Teor de ácidos graxos do leite de cabra Crioula-Núbia com diferentes dietas sazonais em um sistema de alimentação intensiva em uma região árida

  • Ricardo Ortega-Pérez Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Autónoma de Baja California Sur, México. https://orcid.org/0000-0002-3718-9439
  • Eduardo Toyes-Vargas Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada. https://orcid.org/0000-0002-0579-7552
  • José Espinoza-Villavicencio Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Autónoma de Baja California Sur, México. https://orcid.org/0000-0001-8609-8325
  • Alejandro Palacios-Espinosa Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Autónoma de Baja California Sur, México. https://orcid.org/0000-0002-4726-4164
  • Juan Montes-Sánchez CONACYT-Centro de Investigaciones Biológicas del Noroeste, S.C. Independencia y Paseo Eucalipto, Guerrero Negro, Mulegé, Baja California Sur, México. C.P. 23940. https://orcid.org/0000-0002-0400-6587
  • Bernardo Murillo-Amador Centro de Investigaciones Biológicas del Noroeste, S.C. Avenida Instituto Politécnico Nacional No. 195. Colonia Playa Palo de Santa Rita Sur. La Paz, Baja California Sur, México. C.P. 23096. https://orcid.org/0000-0002-9489-4054
Palavras-chave: seca e chuvosa, cabras leiteiras, teor de ácidos graxos, confinamento

Resumo

O objetivo é determinar a variação sazonal (seca e chuvosa) da qualidade da composição de ácidos graxos em um sistema de produção intensivo em uma região árida de México; especificamente em termos da composição de ácidos graxos saturados, monoinsaturados (MUFA), poliinsaturados (PUFA) e de cadeia ramificada. Durante a estação chuvosa, a dieta aplicada aos caprinos foi alfafa (Medicago sativa, luzerna), e na estação seca, uma mistura de milho (Zea mays), grãos de sorgo (Sorghum bicolor) e feno de capim-buffel (Cenchrus ciliaris) foi fornecido na proporção de 1:1:1. Dois grupos de 10 crioulos × anglo-nubia foram amostrados durante o estudo; as amostras de leite foram coletadas no final da estação chuvosa (dezembro) e durante a estação seca (junho) ordenha manual uma vez ao dia entre 7:00 e 9:00 h, 25 mL de leite de ambos os horários foram coletados de cada amostra coletada quando estava entre 90 e 180 dias de lactação. Os resultados mostraram um maior teor de ácidos graxos durante a estação chuvosa, mas não foram encontradas alterações significativas no conteúdo para a maioria dos ácidos graxos totais, exceto para os ácidos graxos poliinsaturados (18:2 n-6, a-ácido linoleico) e ácidos graxos altamente insaturados.

Downloads

Não há dados estatísticos.

Referências

AOAC - Association of Official Analytical Chemistry (2005). Official Methods of Analysis. 18th ed. AOAC International, Washington, DC. https://www.aoac.org/
Ayeb, N., Addis, M., Fiori, M., Khorchani, S., Atigui, M., & Khorchani, T. (2015). Quality and fatty acid profile of the milk of indigenous goats subjected to different local diets in Tunisian arid lands. Journal of Animal Physiology and Animal Nutrition, 100(1), 101-108. https://doi.org/10.1111/jpn.12344
Belury, M.A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, 22(1), 505-531. https://doi.org/10.1146/annurev.nutr.22.021302.121842
Bernacka, H. (2005). Effect of breed and feeding season on the nutritive quality of goat milk. Folia Biologica (Kraków), 53(1), 99-102. https://doi.org/10.3409/173491605775789209
Bligh, E.G., and Dyer, W.J.A. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
Cabrita, A.R.J., Bessa, R.J.B., Alves, S.P., Dewhurst, R.J., & Fonseca, A.J.M. (2007). Effects of dietary protein and starch on intake, milk production, and milk fatty acid profiles of dairy cows fed corn silage-based diets. Journal of Dairy Science, 90(3), 1429-1439. https://doi.org/10.3168/jds.S0022-0302(07)71628-4
Chen, H., Bao, C.H., Shu, G., & Wang, C.H. (2016). Response surface methodology for optimizing fermentation conditions of goat yogurt with Bifidobacterium bifidum and Lactobacillus casei. Emirates Journal of Food and Agriculture, 28(8), 547-553. https://www.ejfa.me/index.php/journal/article/view/1146
Chilliard, Y., Ferlay, A., Mansbridge, R.M., & Doreau, M. (2000). Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans, and conjugated fatty acids. Annales de Zootechnie, 49 (3), 181-205. https://doi.org/10.1051/animres:2000117
Chilliard, Y., & Lamberet, G. (2001). Biochemical characteristics of goat milk lipids and lipolytic system. A comparison with cows and human milk. Effect of lipid supplementation. In: Goat milk quality, raw material for cheesemaking. Freund, G. (ed). Institut Technique des Produits Laitiers Caprins (ITPLC), Ed. Surgères, France. pp. 71-114. https://hal.inrae.fr/hal-02842365
Chilliard Y., Rouel J., Ferlay A., Bernard L., Gaborit P., Raynal-Ljutovac K., & Lauret A. (2005). Effects of type of forage and lipid supplementation on goat milk fatty acids and sensorial properties of cheeses. In: Future of the sheep and goat dairy sector, special issue No 0501/part 5, International Dairy Federation. pp. 297-304. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17209772
Christie, W.W. (1995). Composition and structure of milk lipids. In: Advanced Dairy Chemistry 2: Lipids. Fox, P.F. (ed). Second edition. Chapman and Hall (Ed), London, England. p.1-42.
Czarniawska-Zajac, S., Brzostowski, H., & Zielazny, M. (2006). Effect of the feeding period on the chemical composition and fatty acid profile of milk from French Alpine dairy goats. Polish Journal of Food and Nutrition Sciences, 15/56 (1s), 51-55. http://journal.pan.olsztyn.pl/pdf-98672-30485?filename=EFFECT%20OF%20THE%20FEEDING.pdf
Delgadillo-Puga, C., Cuchillo-Hilario, M., & Pérez-Gil, F. (2009). Effect of feeding management and seasonal variation on fatty acid composition of Mexican soft raw goats’ milk cheese. Italian Journal of Animal Science, 8(2), 402-404. http://dx.doi.org/10.4081/ijas.2009.s2.402
Elgersma, A., Tamminga, S., & Ellen, G. (2006). Modifying milk composition through forage. Animal Feed Science and Technology, 131(3-4), 207-225. https://doi.org/10.1016/j.anifeedsci.2006.06.012
Evershed, R.P., Payne, S., Sherratt, A.G., Copley, M.S., Coolidge, J., Urem-Kotsu, D., Kotsakis, K., Özdoğan, M., Özdoğan, A.E., Nieuwenhuyse, O., Akkermans, P.M.M.G., Bailey, D., Andeescu, R.R., Campbell, S., Farid, S., Hodder, I., Yalman, N., Özbaşaran, M., Bıçakcı, E., Garfinkel, Y., Levy, T., & Burton, M.M. (2008). Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature, 455, 528-531. https://doi.org/10.1038/nature07180
Gharibi, H., Rashidi, A., Jahani-Azizabadi, H., & Mahmoudi, P. (2020). Evaluation of milk characteristics and fatty acid profiles in Markhoz and Kurdish hairy goats. Small Ruminant Research, 192, 106195. https://doi.org/10.1016/j.smallrumres.2020.106195
INEGI-Instituto Nacional de Estadística y Geografía. (2006). Sistemas Nacionales Estadísticos y de Información Geográfica. México. https://www.inegi.com.mx
Kelsey, J.A., Corl, B.A., Collier, R.J., & Bauman, D.E. (2003). The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. Journal of Dairy Science, 86(8), 2588-2597. https://doi.org/10.3168/jds.s0022-0302(03)73854-5
Koppova, I., Novotna, Z., Strosova, L., & Fliegerova, K. (2008). Analysis of fatty acid composition of anaerobic rumen fungi. Folia Microbiologica, 53(3), 217-220. https://doi.org/10.1007/s12223-008-0029-7
Lock, A.L., and Garnsworthy, P.C. (2003). Seasonal variation in milk conjugated linoleic acid and delta-9-desaturase activity in dairy cows. Livestock Production Science, 79(1), 47-59. https://doi.org/10.1016/S0301-6226(02)00118-5
Lopez, A., Vasconi, M., Moretti, V.M., & Bellagamba, F. (2019). Fatty acid profile in goat milk from high- and low-input conventional and organic systems. Animals, 9(7), 452. https://doi.org/10.3390/ani9070452
Manzano, M.G., Návar, J., Pando-Moreno, M., & Martínez, A. (2000). Overgrazing and desertification in northern México, highlights on Northeastern region. Annals of Arid Zone, 39(3), 285-304. https://epubs.icar.org.in/index.php/AAZ/article/view/65874
Marsh, J.B., and Weinstein, D.B. (1966). Simple charring method for determination of lipids. Journal of Lipid Research, 7(4), 574-576. https://www.jlr.org/action/doSearch?text1=Simple+charring+method+for+determination+of+lipids&field1=AllField
Mejía-Uribe, L.A., Domínguez-Vara, I.A, Hernández-Ruipérez, F., & Morales-Almaráz, E. 2022. Production and milk fatty acids profile of dairy goats fed with canola silage (Brassica napus) instead of corn silage (Zea mays) in total mixed rations. Tropical and Subtropical Agroecosystems, 25:1-9. http://doi.org/10.56369/tsaes.3717
Milewski, S., Ząbek, K., Antoszkiewicz, Z., Tański, Z., & Sobczak, A. (2018). Impact of production season on the chemical composition and health properties of goat milk and rennet cheese. Emirates Journal of Food and Agriculture, 30(2), 107-114. https://doi.org/10.9755/ejfa.2018.v30.i2.1602
Moate, P.J., Chalupa, W., Boston, R.C., & Lean, I.J. (2007). Milk fatty acids. I. Variation in the concentration of individual fatty acids in bovine milk. Journal of Dairy Science, 90(10), 4730-4739. https://doi.org/10.3168/jds.2007-0225
Nudda, A., McGuire, M.A., Battacone, G., & Pulina, G. (2005). Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheeses and ricotta. Journal of Dairy Science, 88(4), 1311-1319. https://doi.org/10.3168/jds.S0022-0302(05)72797-1
Renna, M., Lussiana, C., Cornale, P., Fortina, R., & Mimosi, A. (2012). Changes in goat milk fatty acids during abrupt transition from indoor to pasture diet. Small Ruminant Research, 108(1-3), 12-21. https://www.sciencedirect.com/science/article/abs/pii/S0921448812002490
Shingfield, K., Ahvenjärvi, S., Toivonen, V., Ärölä, A., Nurmela, K.V.V., Huhtanen, P., & Griinari, J. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science, 77(1), 165-179. DOI: https://doi.org/10.1017/S1357729800053765
Talpur, F.N., Bhanger, M.I., Khooharo, A. A., & Memon, G.Z. (2008). Seasonal variation in fatty acid composition of milk from ruminants reared under the traditional feeding system of Sindh Pakistan. Livestock Science, 118(1-2), 166-172. https://doi.org/10.1016/j.livsci.2008.04.008
TIBCO Software Inc. (2018). Statistica (data analysis software system), version 13. http://tibco.com.
Vlaeminck, B., Fievez, V., Tamminga, S., Dewhurst, R.J., Van Vuuren, A., De Brabander, D., & Demeyer, D. (2006). Milk odd and branched-chain fatty acids in relation to the rumen fermentation pattern. Journal of Dairy Science, 89(10), 3954-3964. https://doi.org/10.3168/jds.S0022-0302(06)72437-7
Wolff, R.L., Bayard, C.C. & Fabien, R.J. (1995). Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans 18:1 acid: Application to the study of seasonal variation in French butters. Journal of the American Oil Chemists’ Society, 72(12), 1471-1483. https://doi.org/10.1007/BF02577840
Yurchenko, S., Sats, A., Tatar, V., Kaart, T., Mootse, H., & Jõudu, I. (2018). Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chemistry, 254, 326-332. https://doi.org/10.1016/j.foodchem.2018.02.041
Publicado
2023-02-17
Como Citar
Ortega-Pérez, R., Toyes-Vargas, E., Espinoza-Villavicencio, J., Palacios-Espinosa, A., Montes-Sánchez, J., & Murillo-Amador, B. (2023). Teor de ácidos graxos do leite de cabra Crioula-Núbia com diferentes dietas sazonais em um sistema de alimentação intensiva em uma região árida. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 40(1), e234008. Obtido de https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/39730
Secção
Tecnologia de Alimentos