Análise de biplot GGE da interação genótipo por ambiente de cultivares de cevada
Resumo
Este estudo foi realizado para determinar o rendimento de grãos, componentes de rendimento e algumas características de qualidade de 17 genótipos de cevada (Hordeum vulgare L.) em seis ambientes na região de Trácia da Turquia, utilizando análise de componentes principais (ACP) e análise de biplot GGE (genótipo G + interação genótipo x ambiente GE) para definir os genótipos com maior rendimento e características de qualidade desejáveis durante as safras 2016-2017 e 2017-2018. Os valores médios dos genótipos variaram de 5106-6753 kg.ha-1 para rendimento de grãos, de 103,4-117,1 dias para data de perfilhamento, de 94,6-110,3 cm para altura de planta, de 6,26-10,07 cm para comprimento de espiga, de 25,0-75,5 número de grãos por espiga, de 1,20-2,99 g de peso de grão por espiga, de 35,0-50,5 g para peso e número de sementes por mil, e de 56,4-64,1 kg.hl-1 para peso de teste. As relações entre as características e os genótipos examinados foram de 53,9 % como definido pelas análises de biplot PC. A análise de biplot GGE representou 94,77 % da relação de G + GE para o rendimento de grãos. Dois mega círculos foram formados de acordo com o rendimento de grãos, o genótipo Zeus para as localidades E1, E2 e E5 e o genótipo Arcanda para as localidades E3, E4 e E6 foram determinados como genótipos proeminentes. As cultivares Zeus e Arcanda foram identificadas como os genótipos mais ideais e estáveis.
Downloads
Referências
https://doi.org/10.9734/AJEA/2015/9994
Fana, G., Tadese, D., Sebsibe, H. & Verma, R.P. (2018). Multi-environment trial analysis of food barley in Ethiopio using AMMI and GGE biplot methods. Journal of Plant Breeding and Genetics, 6, 75-85. https://doi.org/10.33687/pbg.006.03.2579
FAOSTAT. (2023). Food and Agriculture Organization of the United Nations. Rome-Italy. (Online Database). http://www.faostat/en/
Ghazvini, H., Bagherikia, S., Pour-Aboughdareh, A., Sharifalhossaini, M., Razarvi, S. A., Mohammadi, S., Ghasemi-Kalkhoren, M., Fathihafshejani, A. & Khakizade, G. (2022). GGE biplot analysis of promising barley lines in the cold regions of Iran. Journal of Crop Improvement, 36(4), 461-472. https://doi.org/10.1080/15427528.2021.1977448
Gungor, H., Cakir, M.F., Dumlupinar, Z. (2022a). Evaluation of triticale: genotype by environment interaction and GGE biplot analysis. Journal of Animal and Plant Science, 32(6), 1637-1647. https://doi.org/10.36889/JAPS.2022.6.0573
Gungor, H., Cakir, M.F., & Dumlupinar, Z. (2022b). Evaluation of wheat genotypes: genotype × environment interaction and GGE biplot analysis. Turkish Journal of Field Crops, 27(1), 149-157. https://doi.org/10.17557/tjfc.1081513
Hagos, G. & Abay, F. (2013). AMMI and GGE biplot analysıs of bread wheat genotypes in the Northen part of Ethiopia. Journal of Plant Breeding Genetics, 1:12-18. https://esciencepress.net/journals/index.php/JPBG/article/view/50/76
Khalili, M., Pour-Aboughadareh, A. & Naghavi, M.R. (2013). Screening of drought tolerant cultivars in barley using morphophysiological traits and integrated selection index under water deficit stress condition. Advanced Crop Science., 3, 462–471. https://www.researchgate.net/publication/257208136
Laidig, F., Piepho, H. P., Rentel, D, Drobek, T. & Meyer U. (2017). Breeding progress, genotypic and environmental variation and correlation of quality traits in malting barley in German official variety trials between 1983 and 2015. Theorethical and Applied Genetics, 130, 2411–2429. https://doi.org/10.1007/s00122-017-2967-4
Meints, B., Vallejos, C. & Hayes, P. (2021). Multi-use naked barley: A new frontier. Journal of Cereal Science, 102, 103370. https://doi.org/10.1016/j.jcs.2021.103370
SAS. (2020). JMP® 15 Design of Experiments Guide. Cary, NC 27513. USA.
TUIK. (2023). Turkish Statistical Institute. Retrieved from 30 January 2023 from https://www.tuik.gov.tr
Vaezi, B., Pour-Aboughadareh, A., Mohammadi, R., Armion, M., Mehraban, A., Hossein-Pour, T. & Dorii, M. (2017). GGE biplot and AMMI analysis of barley yield performance in Iran. Cereal Research Communications, 45(3), 500-511. https://doi.org/10.1556/0806.45.2017.019
Vaezi, B., Pour-Aboughadareh, A., Mehraban, A., Hossein-Pour, T., Mohammadi, R., Armion, M. & Dorii, M. (2018). The use of parametric and non-parametric measures for selecting stable and adapted barley lines. Archives of Agronomy and Soil Science, 64(5), 597–611. https://doi.org/10.1080/03650340.2017.1369529
VSN-INTERNATIONAL. (2011). Genstat for windows 14. ed. VSN International, Hemel Hempstead, UK. https://vsni.co.uk/software/genstat
Yan, W., Cornelius, P. L., Crossa, J. & Hunt, L. A. (2001). Two types of GGE biplots for analyzing multi-environment trial data. Crop Science, 41, 656–663. https://doi.org/10.2135/cropsci2001.413656x
Yan, W. & Tinker, N.A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science, 86, 623-645. http://doi.org/10.4141/P05-169
Yan, W, Kang, M. S., Ma, B., Woods, S. & Cornelius, P.L. (2007). GGE Biplot vs. AMMI analysis of genotype by environment data. Crop Science, 47, 643-655. https://doi.org/10.2135/cropsci2006.06.0374
Yan, W. (2014). Crop Variety Trials: Data Management and Analysis. John Wiley & Sons. pp 360. https://doi.org/10.2135/cropsci2014.08.0002br
Direitos de Autor (c) 2023 Hüseyin Güngör, Mehmet Fatih Çakır, Ziya Dumlupınar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.