Evaluation of some integrals involving classical polynomials of Hermite and Legendre using Laplace transform method and hypergeometric approach.
Resumen
En este artículo hemos descrito algunas integrales novedosas asociadas con diferentes polinomios de orden superior, tales como los polinomios clásicos de Hermite y los polinomios clásicos de Legendre. Las siguientes integrales
\begin{equation*}
{\int_{-\infty}^{+\infty}{x^{n}}{\exp(-x^2)}{{H_{n-2k}(x)}}}dx~,
{\int_{-\infty}^{+\infty}{x^{k}}{\exp(-x^2)}{{H_{n}(x)}}}dx~,
\end{equation*}
\begin{equation*}
{\int_{0}^{\infty}{t^{n}}{\exp(-t^2)}{{H_{n}(xt)}}}dt ~~\text{ y }~
{\int_{x}^{\infty}{t^{n+1}}{\exp(-t^2)}{{P_{n}\left(\frac{x}{t}\right)}}}dt
\end{equation*}
Las siguientes integrales se evalúan utilizando el enfoque hipergeométrico y la técnica de transformada de Laplace, que es un enfoque diferente de los enfoques dados por los otros autores en el campo de funciones especiales.
Citas
P. Agarwal, S. Jain, S. Agarwal and M. Nagpal, On a new class of integrals involving Bessel functions of the first kind, Comm. Num. Ana., 2014 (2014), 1-7.
J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel functions}, Bull. Korean Math. Soc., 51(4) (2014), 995-1003.
J. Choi and P. Agarwal. Certain unified integrals involving a product of Bessel functions of first kind}, Hon. Math. J., 35(4) (2013), 667-677.
J. Choi and P. Agarwal. Certain Unified Integrals Associated with Bessel functions, Boundary Value Problems, 95 (2013), 667-677.
J. Choi, A. Hasanove, H. M. Srivastava and M. Turaev. Integral representations for Srivastava's triple hypergeometric functions. Taiwanese J. Math., 15(6) (2011), 2751-2762.
H.E.J. Curzon, {em On a connection between the functions of Hermite and the functions of Legendre}, Proc. London Math. Soc., 12(2) (1913), 236-259.
I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products (6th ed.), CA: Academic Press Inc, San Diego (2000).
R. Mathur. Integral Representation of Exton's Triple Hypergeometric Series, Int. J. Math. Ana., 6(48) (2012), 2357-2360.
M.I. Qureshi, M. Shadab and M.S. Baboo. Evaluation of some novel integrals involving Legendre function of second kind using hypergeometric approach, Palestine J. Math., 6(1) (2017), 68-75.
E.D. Rainville. Notes on Legendre polynomials, Bull. Amer. Math. Soc., 51 (1945), 268-271.
E.D. Rainville. Special Functions. The Macmillan Co. Inc., New York (1960); Reprinted by Chelsea Publ. Co. Bronx, NewYork (1971).