Evaluation of some integrals involving classical polynomials of Hermite and Legendre using Laplace transform method and hypergeometric approach.

  • M. I. Qureshi Department of Applied Sciences and Humanities Faculty of Engineering and Technology Central University Jamia Millia Islamia, New Delhi-110025
  • Saima Jabee
  • M Shadab Department of Applied Sciences and Humanities Faculty of Engineering and Technology Central University Jamia Millia Islamia, New Delhi-110025.
Palabras clave: Teorema de la sumas de Gauss, polinomios clásicos de Legendre de primera clase, polinomios clásicos de Hermite, función hipergeométrica generalizada, Transformada de Laplace

Resumen

En este artículo hemos descrito algunas integrales novedosas asociadas con diferentes polinomios de orden superior, tales como los polinomios clásicos de Hermite y los polinomios clásicos de Legendre. Las siguientes integrales
\begin{equation*}
{\int_{-\infty}^{+\infty}{x^{n}}{\exp(-x^2)}{{H_{n-2k}(x)}}}dx~,
{\int_{-\infty}^{+\infty}{x^{k}}{\exp(-x^2)}{{H_{n}(x)}}}dx~,
\end{equation*}
\begin{equation*}
{\int_{0}^{\infty}{t^{n}}{\exp(-t^2)}{{H_{n}(xt)}}}dt ~~\text{ y }~
{\int_{x}^{\infty}{t^{n+1}}{\exp(-t^2)}{{P_{n}\left(\frac{x}{t}\right)}}}dt
\end{equation*}
Las siguientes integrales se evalúan utilizando el enfoque hipergeométrico y la técnica de transformada de Laplace, que es un enfoque diferente de los enfoques dados por los otros autores en el campo de funciones especiales.

Citas

P. Agarwal, S. Jain, S. Agarwal and M. Nagpal, On a new class of integrals involving Bessel functions of the first kind, Comm. Num. Ana., 2014 (2014), 1-7.

J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel functions}, Bull. Korean Math. Soc., 51(4) (2014), 995-1003.

J. Choi and P. Agarwal. Certain unified integrals involving a product of Bessel functions of first kind}, Hon. Math. J., 35(4) (2013), 667-677.

J. Choi and P. Agarwal. Certain Unified Integrals Associated with Bessel functions, Boundary Value Problems, 95 (2013), 667-677.

J. Choi, A. Hasanove, H. M. Srivastava and M. Turaev. Integral representations for Srivastava's triple hypergeometric functions. Taiwanese J. Math., 15(6) (2011), 2751-2762.

H.E.J. Curzon, {em On a connection between the functions of Hermite and the functions of Legendre}, Proc. London Math. Soc., 12(2) (1913), 236-259.

I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products (6th ed.), CA: Academic Press Inc, San Diego (2000).

R. Mathur. Integral Representation of Exton's Triple Hypergeometric Series, Int. J. Math. Ana., 6(48) (2012), 2357-2360.

M.I. Qureshi, M. Shadab and M.S. Baboo. Evaluation of some novel integrals involving Legendre function of second kind using hypergeometric approach, Palestine J. Math., 6(1) (2017), 68-75.

E.D. Rainville. Notes on Legendre polynomials, Bull. Amer. Math. Soc., 51 (1945), 268-271.

E.D. Rainville. Special Functions. The Macmillan Co. Inc., New York (1960); Reprinted by Chelsea Publ. Co. Bronx, NewYork (1971).

Publicado
2017-06-21
Cómo citar
Qureshi, M. I., Jabee, S., & Shadab, M. (2017). Evaluation of some integrals involving classical polynomials of Hermite and Legendre using Laplace transform method and hypergeometric approach. Divulgaciones Matemáticas, 18(1), 1-9. Recuperado a partir de https://mail.produccioncientificaluz.org/index.php/divulgaciones/article/view/31369
Sección
Artículos de Investigación