Evaluación de algunas integrales que involucran los polinomios clásicos de Hermite y Legendre, usando el método de transformadas de Laplace y el enfoque hipergeométrico

  • M. I. Qureshi Department of Applied Sciences and Humanities Faculty of Engineering and Technology Central University Jamia Millia Islamia, New Delhi-110025
  • Saima Jabee
  • M Shadab Department of Applied Sciences and Humanities Faculty of Engineering and Technology Central University Jamia Millia Islamia, New Delhi-110025.
Keywords: Gauss's summation theorem, classical Legendre's polynomials of first kind, classical Hermite's polynomials, generalized hypergeometric function, Laplace transformation

Abstract

In this paper we have described some novel integrals associated with different higher order polynomials such as classical Hermite's polynomials and classical Legendre's polynomials. The following integrals
\begin{equation*}
{\int_{-\infty}^{+\infty}{x^{n}}{\exp(-x^2)}{{H_{n-2k}(x)}}}dx~,
{\int_{-\infty}^{+\infty}{x^{k}}{\exp(-x^2)}{{H_{n}(x)}}}dx~,
\end{equation*}
\begin{equation*}
{\int_{0}^{\infty}{t^{n}}{\exp(-t^2)}{{H_{n}(xt)}}}dt ~~\text{ and }~
{\int_{x}^{\infty}{t^{n+1}}{\exp(-t^2)}{{P_{n}\left(\frac{x}{t}\right)}}}dt
\end{equation*}
are evaluated using hypergeometric approach and Laplace transform technique, which is a different approach from the approaches given by the other authors in the field of special functions.

References

P. Agarwal, S. Jain, S. Agarwal and M. Nagpal, On a new class of integrals involving Bessel functions of the first kind, Comm. Num. Ana., 2014 (2014), 1-7.

J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel functions}, Bull. Korean Math. Soc., 51(4) (2014), 995-1003.

J. Choi and P. Agarwal. Certain unified integrals involving a product of Bessel functions of first kind}, Hon. Math. J., 35(4) (2013), 667-677.

J. Choi and P. Agarwal. Certain Unified Integrals Associated with Bessel functions, Boundary Value Problems, 95 (2013), 667-677.

J. Choi, A. Hasanove, H. M. Srivastava and M. Turaev. Integral representations for Srivastava's triple hypergeometric functions. Taiwanese J. Math., 15(6) (2011), 2751-2762.

H.E.J. Curzon, {em On a connection between the functions of Hermite and the functions of Legendre}, Proc. London Math. Soc., 12(2) (1913), 236-259.

I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products (6th ed.), CA: Academic Press Inc, San Diego (2000).

R. Mathur. Integral Representation of Exton's Triple Hypergeometric Series, Int. J. Math. Ana., 6(48) (2012), 2357-2360.

M.I. Qureshi, M. Shadab and M.S. Baboo. Evaluation of some novel integrals involving Legendre function of second kind using hypergeometric approach, Palestine J. Math., 6(1) (2017), 68-75.

E.D. Rainville. Notes on Legendre polynomials, Bull. Amer. Math. Soc., 51 (1945), 268-271.

E.D. Rainville. Special Functions. The Macmillan Co. Inc., New York (1960); Reprinted by Chelsea Publ. Co. Bronx, NewYork (1971).

Published
2017-06-21
How to Cite
Qureshi, M. I., Jabee, S., & Shadab, M. (2017). Evaluación de algunas integrales que involucran los polinomios clásicos de Hermite y Legendre, usando el método de transformadas de Laplace y el enfoque hipergeométrico. Divulgaciones Matemáticas, 18(1), 1-9. Retrieved from https://mail.produccioncientificaluz.org/index.php/divulgaciones/article/view/31369