Generalized q-Mittag-Leffler function and its properties.

  • B. V. Nathwani Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002.
Keywords: q -Mittag-Leffler function, q-Bessel function, q-difference equation, q-inverse series, eigen function, generalized q-Konhauser polynomial, series inequality relations

Abstract

Motivated essentially by the success of the applications of the Mittag-Leffler functions in Science and Engineering, we propose here a unification of certain q-extensions of generalizations of Mittag-Leffler function together with Saxena-Nishimoto's function, Bessel-Maitland function, Dotsenko function, Elliptic Function, etc. We obtain Mellin-Barnes contour integral representation, a q-difference equation, Eigen function property. As a specialization, a generalization of q-Konhauser polynomial is considered for which the series inequality relations and inverse series relations are obtained.

References

W. A. Al-Salam and A. Verma. q-Konhauser polynomials, Pacific Journal of Mathematics 1(108) (1983), 1-7.

M. H. Annaby and Z. S. Mansour. q-Fractional calculus and equations, Springer-Verlag Berlin Heidelberg (2012).

B. I. Dave and M. Dalbide. Gessel-Stanton's inverse series and a system of q-polynomials.

Bull. Sci. Math. 138 (2014), 323-334.

G. Gasper and M. Rahman. Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990).

I. S. Gupta and L. Debnath. Some properties of the Mittag-Leffler functions. Integral Trans.

Spec. Funct. 18(5) (2007), 329-336.

H. J. Haubold, A. M. Mathai, and R. K. Saxena. The $H$-Function: Theory and Applications},

Centre for Mathematical Sciences, Pala Campus, Kerala, India {bf 37} (2008).

A. A. Kilbas, M. Saigo, and R. K. Saxena. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15 (2004), 31-49.

V. S. Kiryakova. Multiple (multiindex) Mittag-Leffler functions and relations to generalized

fractional calculus. Journal of Computational and Applied Mathematics 118 (2000), 241-259.

Y. L. Luke. The Special Functions and their approximations. Academic Press, New York,

London1 (1969).

M. Mansour. An asymptotic expansion of the q-Gamma function. Journal of Nonlinear Mathematical Physics 13(4) (2006), 479-483.

G. Mittag-Leffler. Sur la nouvelle fonction. C. R. Acad. Sci., Paris 137 (1903), 554-558.

S.D. Purohit and S.L. Kalla. A generalization of q-Mittag-Leffler function. Mat.Bilt., 35 (2011), 15-26.

J. Riordan. Combinatorial identities. Wiley, New York/London/Sydney (1968).

M. Saigo and A. A. Kilbas. On Mittag Leffler type function and applications. Integral Transforms Spec. Funct., 7 (1998), 97-112.

R. K. Saxena, S. Kalla, and R. Saxena. Multivariate analogue of generatized Mittag-Leffer function. Integral Transform. Spec. Funct., 22(7) (2011), 533-548.

R. K. Saxena and K. N. Nishimoto. Fractional calculus of generalized Mittag-Leffler functions. J. Fract. Calc., 37 (2010), 43-52.

A. K. Shukla and J. C. Prajapati. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl., 336(2) (2007), 797-811.

A. Wiman. Über de fundamental satz in der theoric der funktionen, Acta Math. 29 (1905), 191-201.

Published
2017-06-21
How to Cite
Nathwani, B. V. (2017). Generalized q-Mittag-Leffler function and its properties. Divulgaciones Matemáticas, 18(1), 10-33. Retrieved from https://mail.produccioncientificaluz.org/index.php/divulgaciones/article/view/31370