Boolean algebras, partial orders and axiom of choice

  • Franklin Galindo Departamento de Lógica y Filosofía de la Ciencia. Escuela de Filosofía. Universidad Central de Venezuela.
Keywords: Boolean algebras, partial orders, completion of boolean algebras, method of forcing, axiom of choice, model theory

Abstract

The objective of this paper is to present a demonstration of a classical theorem on boolean algebras and partial orders of current relevance in set theory, as for example, for applications of model construction method called “forcing” (with boolean algebras complete or with partial orders). The theorem to be proved is as follows: “Any partial order can be extended to a single complete boolean algebra (up to isomorphism)". Where to extend means “embed densely”. Such a demonstration is done using Dedekind's cuts following the text “Set Theory” of Jech, and other ideas of the author of this article. In addition, some weak versions of the axiom of choice related to boolean algebras are formulated, which are also of great importance for the research in set theory and model theory, since this are powerful model construction techniques, such as the compactness theorem (allows the construction of non-standard models, etc.) and the ultrafilter theorem, which allows the construction of ultraproducts (can be used to investigate problems of large cardinals, etc). Some references of open problems on the subject are presented.

References

M. Bekkali. Open problems in boolean algebras over partially ordered sets. University Side Mohamed Ben Abdullah (USMBA). Fez, Marocco. 2010. (bekka@menara.ma).

J. Bell. Boolean-Valued Models and Independence Proofs in Set Theory. Clarendon Press. Oxford.1979.

C. Betz. Introducción a la Teoría de la Medida e Integración. Universidad Central de Venezuela-Facultad de Ciencias. 1992.

P. Cohen. The Independence of continuum Hypothesis II. Procedings of the National Academy of Science U.S.A. 51 (1964), 105-110.

P. Cohen. Set Theory and The Continuum Hypothesis. W. A. Benjamin, Inc. 1966.

M. Corbillón. Análisis real no estándar. Tesis de licenciatura en Matemáticas. Tutor: Dr. Josep Maria Font Llovet. Facultat de Matemátiques. Universitat de Barcelona. 2015.

C. Chang - H. Keisler. Model Theory. Dover Publications. 2012.

C. Di Prisco. Introdución a la Lógica Matemática. Emalca Amazonia. 2009.

C. Di Prisco. Teoría de Conjuntos. Universidad Central de Venezuela: Consejo de Desarrollo Científico y Humanístico. 2009.

H. Enderton. Una Introducción Matemática a la Lógica. Universidad Nacional Autónoma de México. 2004.

H. Enderton. Elements of Set Theory. Academic Press. New York. 1977.

C. Di Prisco and F. Galindo. Perfect set properties in models of ZF. Fundamenta Mathematicae 208(2010), 249-262.

C. Di Prisco y C.Uzcátegui. Una introducción a la teoría descriptiva de conjuntos. Asociación Matemática Venezolana, 1991.

K. Gödel. Obras completas. Alianza. Madrid. 1981.

P. Halmos. Lectures on Boolean Algebras. Van Nostrand, 1963.

H. Herrlich. Axiom of Choice. Springer. Berlin. 2006.

J. Halpern and A. Lévy. The Boolean prime ideal theorem does not imply the axiom of choice. En “Axiomatic Set Theory” (D. S. Scoott, ed), Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, 1967.

P. Howard and J. Rubin. Consequences of the Axiom of Choice. American Mathematical Society. 1998.

I. Jané. Álgebras de Boole y Lógica. Publicacions Universitat de Barcelona. 1989.

T. Jech. Set Theory. Springer. 2002.

T. Jech. Set Theory. Academic Press. New York. 1978.

T. Jech. The Axiom of Choice. North-Holland Publishing Company. Amsterdam. 1973.

T. Jech. Multiple Forcing. Cambridge University Press. 1986.

J. Kelley. General Topology. Springer. 1991.

K. Kunen. Set Theory. Elsevier. Amsterdam. 2006.

M. Manzano. Teoría de Modelos. Alianza. Madrid. 1989.

E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall/CRL. 2009.

A. Petrovich. Álgebras de Boole. Universidad Nacional del Sur. Bahía Blanca. 2007. www.matematica.uns.edu.ar/IXCongresoMonteiro/Comunicaciones/Boolean.pdf.

H. Royden. Real Analysis. Pearson. 2010.

R. Sikorski. Boolean Algebras. Springer-Verlag. 1960.

R. Solovay. On the cardinalidad desets of reals. “Foundations of Mathematics. Symposium Papers commemorating the sixtieth birthday of Kurt Gödel”. Jack J. Bullof, Thomas, C. Holyoke and S. W. Hahn, Editors. Springer-Verlag. 1969.

M. Stone. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40 (1936), 37-111. Zbl. 014.34002

Published
2017-06-21
How to Cite
Galindo, F. (2017). Boolean algebras, partial orders and axiom of choice. Divulgaciones Matemáticas, 18(1), 34-54. Retrieved from https://mail.produccioncientificaluz.org/index.php/divulgaciones/article/view/31371