A proof of a version of Hensel’s lemma

https://doi.org/10.5281/zenodo.5728221

Keywords: local rings, discrete valuation rings, Hensel’s lemma

Abstract

By using a few basic facts, a proof of a known version of Hensel’s lemma in the context of local rings is presented.

References

E. Artin. Algebraic Numbers and Algebraic Functions, American Mathematical Society, Providence, Rhode Island, 2005.

N. Bourbaki. Commutative Algebra, Hermann and Addison-Wesley, Paris and Reading, Massachusetts, 1972.

J.W. Cassels. Local Fields, London Mathematical Society Student Texts 3, Cambridge University Press, Cambridge, 1986.

R. Godement. Cours d’algbre, Troisime dition, Enseignement des Sciences, Hermann, Paris, 1966.

N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions, Second edition, Springer-Verlag, Berlin. Heidelberg. New York, 1984.

J. P. Serre. Corps Locaux, Quatrime dition, Actualits Scientifiques et Industrielles 1296, Hermann, Paris, 1968.

J. P. Serre. A Course in Arithmetic, Third printing, Graduate Texts in Mathematics 7, Springer-Verlag, Berlin. Heidelberg. New York, 1985.

Published
2021-07-22
How to Cite
Pombo Jr., D. P. (2021). A proof of a version of Hensel’s lemma: https://doi.org/10.5281/zenodo.5728221. Divulgaciones Matemáticas, 22(1), 90-95. Retrieved from https://mail.produccioncientificaluz.org/index.php/divulgaciones/article/view/36566
Section
Expository and historical papers