A new method for eliminating the indeterminacy in the singularly perturbed problems with Ackerberg-O’Malley resonance
Abstract
In the singularly perturbed problems with resonant character in the sense of Ackerberg and O’Malley, the traditional method of matched asymptotic expansions fails to determine the resonance’s amplitude. A new method is presented, based on established procedures from the theory of ordinary differential equations, for eliminating such indeterminacy taking advantage of the incomplete result of the matched asymptotic expansions and eliminating in a natural fashion the superfluous degree of freedom, through the derivation and imposition of an additional exact boundary condition that relates the slopes at both extremities of the domain. The new method is effective for the variety of problems recognized as resonant, including those exhibiting supersensitivity and also for those of a different structure but with analogous indeterminacy, for example involving a partial differential equation.
References
[2] Bohé, A.; Free layers in a singularly perturbed boundary value problem, SIAM J. Appl. Anal., 21(5) (1990), 1264 -1280.
[3] Cook, L.P., Eckhaus, W.; Resonance in a boundary value problem of singular perturbation type, Stud. Appl. Math., 52(2) (1973), 129 - 139.
[4] de Groen, P.P.N.; The nature of resonance in a singular perturbation problem of turning point type, SIAM J. Math. Anal., 11(1) (1980), 1 - 22.
[5] De Maesschalck, P.; Ackerberg-O’Malley resonance in boundary value problems with a turning point of any order, Comm. Pure Appl. Anal., 6(2) (2007), 311 - 333.
[6] Fruchard, A., Schäfke, R.; Composite asymptotic expansions, Springer-Verlag, Berlı́n Heidelberg, 2013.
[7] Fu-ru, J.; On the boundary value problems for ordinary differential equations with turning points, Appl. Math. Mech., 12(2) (1991), 121 - 129.
[8] Grasman, J., Matkowsky, B.J.; A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points, SIAM J. Appl. Math., 32(3) (1977), 588 - 597.
[9] Holmes, M.H.; Introduction to perturbation methods, Springer, Nueva York, 2013.
[10] Jiang, F.-r., Jin, Q.-n.; Asymptotic solutions of boundary value problems for third-order ordinary differential equations with turning points, Appl. Math. Mech., 22(4) (2001), 394 -403.
[11] Kopell, N.; A geometric approach to boundary layer problems exhibiting resonance, SIAM J. Appl. Math., 37(2) (1979), 436 - 458.
[12] Kreiss, H.-O.; Resonance for singular perturbation problems, SIAM J. Appl. Math., 41(2) (1981), 331 - 344.
[13] Kreiss, H.O., Parter, S.V.; Remarks on singular perturbations with turning points, SIAM J. Math. Anal., 5(2) (1974), 230 - 251.
[14] Laforgue, J.; Supersensibilidad en un modelo de agregación con tiempo discreto, Divulg. Mat., 6(2) (1998), 113 - 119.
[15] Laforgue, J.; Odd-order turning point: resonance and dynamic metastability, En: Tercer congreso sobre ecuaciones diferenciales y aplicaciones, Mayo 1997 (Rueda, A.D., Guı́ñez, J.), La Universidad del Zulia, Maracaibo, (1998), II, 17 - 23.
[16] Laforgue, J.; Estudio asintótico de un impulso metaestable para una ecuación con un término no local, Pro Math., 14(27-28) (2000), 13 - 23.
[17] Laforgue, J.; Métodos de perturbaciones para ecuaciones algebraicas y diferenciales, XI T-ForMa, Departamento de Matemáticas, Universidad de Oriente, Cumaná, 2011.
[18] Laforgue, J.; Resolución de la indeterminación en la resonancia de Ackerberg y O’Malley, Trabajo de Ascenso, Departamento de Matemáticas, Universidad de Oriente, Cumaná, 2022.
[19] Laforgue, J.G., O’Malley, Jr., R.E.; Supersensitive boundary value problems, En: Asymptotic and numerical methods for partial differential equations with critical parameters (Kaper, H.G., Garbey, M.), Kluwer, Dordrecht, (1993), 215 - 223.
[20] Lagerstrom, P.; Matched asymptotic expansions - Ideas and techniques, Springer-Verlag, Nueva York, 1988.
[21] Lakin, W.D.; Boundary value problems with a turning point, Stud. Appl. Math., 51(3) (1972), 261 - 275.
[22] Lewis, G.N.; Turning point problems and resonance, IMA J. Appl. Math., 28 (1982), 169 -183.
[23] Lin, C.H.; The sufficiency of Matkowsky-condition in the problem of resonance, Trans. Amer. Math. Soc., 278(2) (1983), 647 - 670.
[24] Lions, J.L.; Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Springer-Verlag, Berlı́n Heidelberg, 1973.
[25] MacGillivray, A.D.; A method for incorporating transcendentally small terms into the method of matched asymptotic expansions, Stud. Appl. Math., 99 (1997), 285 - 310.
[26] Matkowsky, B.J.; On boundary layer problems exhibiting resonance, SIAM Review, 17(1) (1975), 82 - 100. Errata, SIAM Review, 18(1) (1976), 112 - 112.
[27] McKelvey, R., Bohac, R.; Ackerberg-O’Malley resonance revisited, Rocky Mountain J. Math., 6 (1976), 637 - 650.
[28] Niijima, K.; Approximate solutions of singular perturbation problems with a turning point, Funkcialaj Ekvacioj, 24 (1981), 259 - 280.
[29] Olver, F.W.J.; Sufficient conditions for Ackerberg-O’Malley resonance, SIAM J. Math. Anal., 9(2) (1978), 328 - 355.
[30] O’Malley, Jr., R.E.; Thinking about ordinary differential equations, Cambridge University Press, Cambridge, 1997.
[31] O’Malley., R.E.; Historical developments in singular perturbations, Springer, Cham, 2014.
[32] Sibuya, Y.; A theorem concerning uniform simplification at a transition point and the problem of resonance, SIAM J. Math. Anal., 12(5) (1981), 653 - 668.
[33] Skinner, L.A.; Uniform solution of boundary layer problems exhibiting resonance, SIAM J. Appl. Math., 47(2) (1987), 225 - 231.
[34] Srinivasan, R.; A variational principle for the Ackerberg-O’Malley resonance problem, Stud. Appl. Math., 79 (1988), 271 - 289.
[35] Watts, A.M.; A singular perturbation problem with a turning point, Bull. Austral. Math. Soc., 5 (1971), 61 - 73.
[36] Williams, M.; Another look at Ackerberg-O’Malley resonance, SIAM J. Appl. Math., 41(2) (1981), 288 - 293.
[37] Wong, R.; Asymptotic approximations of integrals, Academic Press, San Diego, 1989.
[38] Wong, R., Yang, H.; On the Ackerberg-O’Malley resonance, Stud. Appl. Math., 110 (2003), 157 - 179.
[39] Zauderer, E.; Boundary value problems for a second order differential equation with a turning point, Stud. Appl. Math., 51(4) (1972), 411 - 413.
Copyright (c) 2023 Jacques Laforgue
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.