Dihydroartemisinin, an artemisinin derivative, reverses oxaliplatin resistance in human colorectal cancer cells by regulating the SIRT3/PI3K/AKT signalling pathway.

La dihidroartemisinina, un derivado de la artemisinina, revierte la resistencia al oxaliplatino en células humanas de cáncer colorrectal mediante la regulación de la vía de señalización SIRT3/PI3K/AKT.

Palabras clave: dihidroartemisinina, SIRT3, oxaliplatino, cáncer colorrectal

Resumen

Se ha demostrado que la dihidroartemisinina (DHA), un derivado de la artemisinina, actúa como quimiosensibilizador de diversos agentes quimioterapéuticos contra el cáncer tanto in vitro como in vivo. Sin embargo, en el cáncer colorrectal (CCR), ningún estudio se ha centrado en el efecto del DHA sobre la resistencia al oxaliplatino (L -OHP). El objetivo de nuestro estudio era examinar la eficacia del DHA para revertir la resistencia de las células humanas de CCR al L -OHP, así como sus mecanismos moleculares subyacentes. Las células LoVo se adquirieron a ATCC, mientras que las células LoVo/L -OHP se obtuvieron exponiendo las células LoVo a concentraciones progresivamente crecientes de L -OHP. Las células LoVo/L -OHP se trataron con diversas con-centraciones de DHA, y el índice de apoptosis celular y la viabilidad se evalua-ron mediante citometría de flujo y CCK-8. Nuestros resultados mostraron que el tratamiento con DHA disminuía notablemente la viabilidad de las células LoVo/L -OHP y aumentaba el índice de apoptosis. Desde el punto de vista de su mecanismo de acción, se observó que el DHA potenciaba la expresión de la sirtuina 3 (SIRT3) y suprimía la cascada de señalización fosfatidilinositol 3-ci-nasa (PI3K)/AKT. El silenciamiento de SIRT3 revirtió el efecto del DHA sobre la apoptosis y la viabilidad celular a través de la activación del eje PI3K/AKT en las células LoVo/L -OHP. En conjunto, nuestro estudio descubrió la capacidad del DHA para contrarrestar la resistencia a L -OHP en células LoVo/L -OHP a través de la modulación de la vía de señalización SIRT3/PI3K/AKT, lo cual sugiere una nueva foco de investigación para el tratamiento del CCR.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Xiaodong Shen, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai, China.

Department of Gastrointestinal Surgery, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai 201199, China.

Chencheng Shi, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai, China.

Department of Gastrointestinal Surgery, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai 201199, China.

Ming Lei, Minhang Hospital Affiliated to Fudan University, Shanghai, China.

Department of Gastrointestinal Surgery, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai 201199, China.

Rongjian Zhou, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai, China.

Department of Gastrointestinal Surgery, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai 201199, China.

Shaoqun Liu, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai, China.

Department of Gastrointestinal Surgery, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai 201199, China.

Chang Su, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai, China.

Department of Gastrointestinal Surgery, Minhang Hospital Affiliated to Fudan University, Xinzhuang Town, Shanghai 201199, China.

Citas

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBO-CAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249.

Cvitkovic E, Bekradda M. Oxaliplatin: a new therapeutic option in colorectal cancer. Semin Oncol 1999;26(6):647-662.

Rovers KP, Wassenaar ECE, Lurvink RJ, Creemers G-JM, Burger JWA, Los M, Huysentruyt CJR, van Lijnschoten G, Nederend J, Lahaye MJ. Pressurized intraperitoneal aerosol chemotherapy (oxaliplatin) for unresectable colorectal peritoneal metastases: a multicenter, single-arm, phase II trial (CRC-PIPAC). Ann Surg Oncol 2021: 28(9):5611-5616.

Ranieri G, Laforgia M, Nardulli P, Ferraiuolo S, Molinari P, Marech I, Gadaleta CD. Oxaliplatin-based intra-arterial chemotherapy in colorectal cancer liver metastases: a review from pharmacology to clinical application. Cancers 2019;11(2):141.

Zhang Y, Li C, Liu X, Wang Y, Zhao R, Yang Y, Zheng X, Zhang Y, Zhang X. circHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637. EBioMedicine 2019;48:277-288.

Lai M, Liu G, Li R, Bai H, Zhao J, Xiao P, Mei J. Hsa_circ_0079662 induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-α pathway in human colon cancer. J Cell Mol Med 2020;24(9):5021-5027.

Mitsuuchi Y, Johnson SW, Selvakumaran M, Williams SJ, Hamilton TC, Testa JR. The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/ SDI1 induced by cisplatin and paclitaxel. Cancer Research 2000;60(19):5390-5394.

Selfe J, Goddard NC, McIntyre A, Taylor KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA, Gilbert DC. IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance. J Pathol 2018;244(2):242-253.

Lee S, Jeon Y-M, Jo M, Kim H-J. Overex-pression of SIRT3 suppresses oxidative stress-induced neurotoxicity and mitochondrial dysfunction in dopaminergic neuronal cells. Exp Neurobiol 2021;30(5):341.

Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, Billings Iv FT, Verdin E, Auwerx J, Harrison DG. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 2020;126(4):439-452.

Gao J, Feng Z, Wang X, Zeng M, Liu J, Han S, Xu J, Chen L, Cao K, Long J. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ 2018;25(2):229-240.

Guo R, Li Y, Xue Y, Chen Y, Li J, Deng X, Su J, Liu Y, Sun L. SIRT3 increases cisplatin sensitivity of small-cell lung cancer through apoptosis. Gene 2020;745:144629.

Xu K, He Y, Moqbel SAA, Zhou X, Wu L, Bao J. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/ mTOR pathway. Int J Biol Macromol 2021;175:351-360.

Wang Z, Li Y, Wang Y, Zhao K, Chi Y, Wang B. Pyrroloquinoline quinine protects HK-2 cells against high glucose-induced oxidative stress and apoptosis through Sirt3 and PI3K/Akt/FoxO3a signalling pathway. Biochem Biophys Res Commun 2019;508(2):398-404.

Li Q, Ma Q, Cheng J, Zhou X, Pu W, Zhong X, Guo X. Dihydroarte-misinin as a sensitizing agent in cancer therapies. Onco Targets Ther 2021;14:2563.

Zhang L, Wang Z, Wang C, Li J, Zhao Y, Zhang H, Yu Y, Wang G, Li Y. Dihydroarte-misinin protects against acute and chronic pain via SIRT3-dependent inhibition of peroxiredoxin-3 hyperacetylation and peroxynitrite accumulation in mice. Research Square 2022. https://doi.org/10.21203/ rs.3.rs-1607556/v1

Wang Q, Wei J, Wang C, Zhang T, Huang D, Wei F, He F, Cai W, Yang P, Zeng S. Gambogic acid reverses oxaliplatin resistance in colorectal cancer by increasing intracellular platinum levels. Oncol Lett 2018;16(2):2366-2372.

Wang C-H, Baskaran R, Ng SS-C, Wang T-F, Li C-C, Ho T-J, Hsieh DJ-Y, Kuo C-H, Chen M-C, Huang C-Y. Platycodin D confers oxaliplatin resistance in colorectal cancer by activating the LATS2/YAP1 axis of the hippo signalling pathway. J Cancer 2023;14(3):393.

Liu X, Wu B, Chen H, Sun H, Guo X, Sun T, Zhou D, Yang S. Intense endoplasmic reticulum stress (ERS)/IRE1α enhanced Oxaliplatin efficacy by decreased ABCC10 in colorectal cancer cells. BMC Cancer 2022;22(1):1369.

Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265-283.

Liang Y, Zhu D, Zhu L, Hou Y, Hou L, Huang X, Li L, Wang Y, Li L, Zou H. Dichloroacetate overcomes oxaliplatin chemoresistance in colorectal cancer through the miR-543/PTEN/Akt/mTOR pathway. J Cancer 2019;10(24):6037.

Aung W, Sogawa C, Furukawa T, Saga T. Anticancer effect of ihydroartemisinin (DHA) in a pancreatic tumor model evaluated by conventional methods and optical imaging. Anticancer Res 2011;31(5):1549-1558.

Jiao Y, Ge Cm, Meng Qh, Cao Jp, Tong J, Fan Sj. Dihydroarte-misinin is an inhibitor of ovarian cancer cell growth 1. Acta Pharmacol Sin 2007;28(7):1045-1056.

Michaelis M, Kleinschmidt MC, Barth S, Rothweiler F, Geiler J, Breitling R, Mayer B, Deubzer H, Witt O, Kreuter J. Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 2010;79(2):130-136.

Zhang H, Zhou F, Wang Y, Xie H, Luo S, Meng L, Su B, Ye Y, Wu K, Xu Y. Eliminating radiation resistance of non-small cell lung cancer by dihydroarte-misinin through abrogating immunity escaping and promoting radiation sensitivity by inhibiting PD-L1 expression. Front Oncol 2020;10:595466.

Zhang J, Li Y, Wang J-G, Feng J-Y, Huang G-D, Luo C-G. Dihydroarte-misinin affects STAT3/DDA1 signalling pathway and reverses breast cancer resistance to cisplatin. Am J Chin Med 2023;51(02):445-459.

Yao Z, Bhandari A, Wang Y, Pan Y, Yang F, Chen R, Xia E, Wang O. Dihydroarte-misinin potentiates antitumor activity of 5-fluorouracil against a resistant colorectal cancer cell line. Biochem Biophys Res Commun 2018;501(3):636-642.

Wang Y, Yang Z, Zhu W, Chen Y, He X, Li J, Han Z, Yang Y, Liu W, Zhang K. Dihydroarte-misinin inhibited stem cell‐like properties and enhanced oxaliplatin sensitivity of colorectal cancer via AKT/mTOR signalling. Drug Dev Res 2023;84(5):988-998.

Cao Y, Li P, Wang H, Li L, Li Q. SIRT3 promotion reduces resistance to cisplatin in lung cancer by modulating the FOXO3/CDT1 axis. Cancer Med 2021;10(4):1394-1404.

Wang Q, Ye S, Chen X, Xu P, Li K, Zeng S, Huang M, Gao W, Chen J, Zhang Q. Mitochondrial NOS1 suppresses apoptosis in colon cancer cells through increasing SIRT3 activity. Biochem Biophys Res Commun 2019;515(4):517-523.

Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C, Liu Y. PI3K/AKT pathway as a key link modulates the multi-drug resistance of cancers. Cell Death Dis 2020;11(9):797.

Zhang Y, Xu Z, Sun Y, Chi P, Lu X. Knock-down of KLK11 reverses oxaliplatin resistance by inhibiting proliferation and activating apoptosis via suppressing the PI3K/ AKT signal pathway in colorectal cancer cell. OncoTargets Ther 2018:809-821.
Publicado
2024-08-20
Cómo citar
Shen, X., Shi, C., Lei, M., Zhou, R., Liu, S., & Su, C. (2024). Dihydroartemisinin, an artemisinin derivative, reverses oxaliplatin resistance in human colorectal cancer cells by regulating the SIRT3/PI3K/AKT signalling pathway.: La dihidroartemisinina, un derivado de la artemisinina, revierte la resistencia al oxaliplatino en células humanas de cáncer colorrectal mediante la regulación de la vía de señalización SIRT3/PI3K/AKT. Investigación Clínica, 65(3), 267-278. https://doi.org/10.54817/IC.v65n3a01
Sección
Trabajos Originales