The p300-NF-κB pathway induces the activation of the NLRP3 inflammasome and the pyroptosis of neurons in an in vitro model of Alzheimer’s disease.

En el modelo in vitro de la enfermedad de Alzheimer, la vía p300 NF - Kappa B induce la activación del inflamasoma NLRP3 y la piroptosis neuronal en un modelo in vitro de la enfermedad de Alzheimer.

Palabras clave: enfermedad de Alzheimer, P300, muerte por quemadura celular, cuerpo inflamatorio nlrp3

Resumen

La muerte neuronal inducida por la inflamación es la principal causa de la enfermedad de Alzheimer (AD). El p300 juega un papel importante en las enfermedades cerebrales. Sin embargo, se desconoce el papel del p300 en la AD. El objetivo de este estudio es explorar el potencial del p300 en modelos in vitro de AD. Se utilizó Western blot para detectar la expresión de proteínas. Los niveles de ARNm se determinaron mediante la reacción cuanti- tativa en cadena de la polimerasa de transcripción inversa. Se utilizó la prueba de inmunoabsorción enzimática para detectar la liberación de citocinas. La función celular se determinó mediante el contador celular Kit - 8, la lactato deshidrogenasa y la medición con citometría de flujo. La interacción entre el factor nuclear Kappa b (nf - Kappa b) y el dominio Pirin 3 (nlrp3), que contiene la familia NLR, fue verificada por inmunoprecipitación de cromatina y detec- ción de luciferasa. La proteína de unión a E1A p300 (p300) está sobreexpresada en un modelo de AD inducido por Aβ 1-42. Sin embargo, el tratamiento con un inhibidor del p300 (GNE - 049) redujo la inflamación y redujo la muerte por piroptosis neuronal inducida por Aβ 1-42 . El p300 activa NF - Kappa b, que inhibe el efecto del GNE - 049 y promueve la muerte por piroptosis neuronal. Además, NF-κB epigeneticamentelly activa el NLRP3 inflamasoma Epigenética NF-Kappa B activa los cuerpos inflamatorios nlrp3. La vía p300 / NF - Kappa B promueve la muerte focal neuronal en modelos in vitro de AD activando el inflamasoma NLRP3. Por lo tanto, la transmisión de la señal p300/NF-Kappa B/NLRP3 puede ser un objetivo terapéutico potencial para la AD.

Descargas

La descarga de datos todavía no está disponible.

Citas

Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chetelat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021; 397(10284):1577-90. doi: https://doi.org/10.1016/S0140-6736(20)32205-4.

Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. J Prev Alzheimers Dis. 2021;8(3):371-86. doi: https://doi.org/10.14283/jpad.2021.23.

2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19(4):1598- 695. doi: https://doi.org/10.1002/alz.13016.

Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021;20(3):222-34. doi: https://doi.org/10.1016/S1474-4422(20)30440-3.

Wang Q, Gao F, Dai LN, Zhang J, Bi D, Shen Y. Clinical Research Investigating Alzheimer’s Disease in China: Current Status and Future Perspectives Toward Prevention. J Prev Alzheimers Dis. 2022;9(3):532-41. doi: https://doi.org/10.14283/jpad.2022.46.

Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, et al. Importance of Bmal1 in Alzheimer’s disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell. 2022;21(10):e13704. doi: https://doi.org/10.1111/acel.13704.

Chen P, Guo Z, Zhou B. Insight into the role of adult hippocampal neurogenesis in aging and Alzheimer’s disease. Ageing Res Rev. 2023;84:101828. doi: https://doi.org/10.1016/j. arr.2022.101828.

Yang F, Bettadapura SN, Smeltzer MS, Zhu H, Wang S. Pyroptosis and pyroptosis inducing cancer drugs. Acta Pharmacol Sin. 2022;43(10):2462-73. doi: https://doi.org/10.1038/s41401-022-00887-6.

Moonen S, Koper MJ, Van Schoor E, Schaeverbeke JM, Vandenberghe R, von Arnim CAF, et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol. 2023;145(2):175-95. doi: https://doi.org/10.1007/s00401-022-02528-y.

Zhou J, Qiu J, Song Y, Liang T, Liu S, Ren C, et al. Pyroptosis and degenerative diseases of the elderly. Cell Death Dis. 2023;14(2):94. doi: https://doi.org/10.1038/s41419-023-05634-1.

Elias EE, Lyons B, Muruve DA. Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol. 2023;19(5):337-50. doi: https://doi.org/10.1038/s41581-022-00662-0.

Li Z, Ji S, Jiang ML, Xu Y, Zhang CJ. The Regulation and Modification of GSD-MD Signaling in Diseases. Front Immunol. 2022;13:893912. doi: https://doi.org/10.3389/fimmu.2022.893912.

Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021;18(9):2114-27. doi: https://doi.org/10.1038/s41423-021-00740-6.

Yao H, Zhang D, Yu H, Yuan H, Shen H, Lan X, et al. Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation. Mol Psychiatry. 2023;28(2):919-30. doi: https://doi.org/10.1038/s41380-022-01841-y.

Hou Y, Wei Y, Lautrup S, Yang B, Wang Y, Cordonnier S, et al. NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc Natl Acad Sci U S A. 2021;118(37). doi: https://doi.org/10.1073/pnas.2011226118.

Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome- mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res. 2023;72(9):1839-59. doi: https://doi.org/10.1007/s00011-023-01790-4.

Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, et al. Salidroside Ameliorates Alzheimer’s Disease by Targeting NLRP3 Inflammasome-Mediated Pyroptosis. Front Aging Neurosci. 2021;13:809433. doi: https://doi.org/10.3389/fnagi.2021.809433.

Chakraborty R, Ostriker AC, Xie Y, Dave JM, Gamez-Mendez A, Chatterjee P, et al. Histone Acetyltransferases p300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity. Circulation. 2022;145(23):1720-37. doi: https://doi.org/10.1161/CIRCULATIONAHA.121.057599.

Xu Y, Wan W. Acetylation in the regulation of autophagy. Autophagy. 2023;19(2):379-87. doi: https://doi.org/10.1080/15548627.2022.2062112.

Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T. Histone acetyltransferases CBP/ p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 2022;12(11):4935-48. doi: https://doi.org/10.7150/thno.73223.

Cao W, Feng Z, Zhu D, Li S, Du M, Ye S, et al. The Role of PGK1 in Promoting Ischemia/Reperfusion Injury-Induced Microglial M1 Polarization and Inflammation by Regulating Glycolysis. Neuromolecular Med. 2023;25(2):301-11. doi: https://doi.org/10.1007/s12017-023-08736-3.

Bai B, Zhang Q, Wan C, Li D, Zhang T, Li H. CBP/p300 inhibitor C646 prevents high glucose exposure induced neuroepithelial cell proliferation. Birth Defects Res. 2018;110(14):1118-28. doi: https://doi.org/10.1002/bdr2.1360.

Cintra MTG, Avila RT, Soares TO, Cunha LCM, Silveira KD, de Moraes EN, et al. Increased N200 and P300 latencies in cognitively impaired elderly carrying ApoE epsilon-4 allele. Int J Geriatr Psychiatry. 2018;33(2):e221-e7. doi: https://doi.org/10.1002/gps.4773.

Chatterjee S, Mizar P, Cassel R, Neidl R, Selvi BR, Mohankrishna DV, et al. A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. J Neurosci. 2013;33(26):10698-712. doi: https://doi.org/10.1523/JNEUROSCI.5772-12.2013.

Chen X, Li Y, Wang C, Tang Y, Mok SA, Tsai RM, et al. Promoting tau secretion and propagation by hyperactive p300/CBP via autophagy-lysosomal pathway in tauopathy. Mol Neurodegener. 2020;15(1):2. doi: https://doi.org/10.1186/s13024-019-0354-0.

Shin MK, Vazquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintron-Perez CJ, et al. Reducing acetylated tau is neuroprotective in brain injury. Cell. 2021;184(10):2715-32 e23. doi: https://doi.org/10.1016/j.cell.2021.03.032.

Wu J, Han Y, Xu H, Sun H, Wang R, Ren H, et al. Deficient chaperone-mediated autophagy facilitates LPS-induced microglial activation via regulation of the p300/NF-kappaB/NLRP3 pathway. Sci Adv. 2023;9(40):eadi8343. doi: https://doi.org/10.1126/sciadv.adi8343.

Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, et al. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun. 2023;14(1):4103. doi: https://doi.org/10.1038/s41467-023-39735-4.

Takouda J, Katada S, Imamura T, Sanosaka T, Nakashima K. SoxE group transcription factor Sox8 promotes astrocytic differentiation of neural stem/precursor cells downstream of Nfia. Pharmacol Res Perspect. 2021;9(6):e00749. doi: https://doi.org/10.1002/prp2.749.

Pajarillo E, Digman A, Nyarko-Danquah I, Son DS, Soliman KFA, Aschner M, et al. Astrocytic transcription factor REST upregulates glutamate transporter EAAT2, protecting dopaminergic neurons from manganese-induced excitotoxicity. J Biol Chem. 2021;297(6):101372. doi: https://doi.org/10.1016/j.jbc.2021.101372.

Jeong GW, Lee HH, Lee-Kwon W, Kwon HM. Microglial TonEBP mediates LPS- induced inflammation and memory loss as transcriptional cofactor for NF-kappaB and AP-1. J Neuroinflammation. 2020;17(1):372. doi: https://doi.org/10.1186/s12974-020-02007-9.

Chen S, Liu H, Wang S, Jiang H, Gao L, Wang L, et al. The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-kappaB-p65 Signaling. Nutrients. 2022;14(7). doi: https://doi.org/10.3390/nu14071417.

Zhou L, Kong G, Palmisano I, Cencioni MT, Danzi M, De Virgiliis F, et al. Reversible CD8 T cell-neuron cross-talk causes aging-dependent neuronal regenerative decline. Science. 2022;376(6594):eabd5926. doi: https://doi.org/10.1126/science.abd5926.

Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/ STING in ALS. Cell. 2020;183(3):636-49 e18. doi: https://doi.org/10.1016/j.cell.2020.09.020.

Jung BK, Park Y, Yoon B, Bae JS, Han SW, Heo JE, et al. Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage. Autophagy. 2023;19(8):2296-317. doi: https://doi.org/10.1080/15548627.2023.2180202.

Chen S, Guan S, Yan Z, Ouyang F, Li S, Liu L, et al. Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review). Int J Mol Med. 2023;52(4). doi: https://doi.org/10.3892/ ijmm.2023.5301.

Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019;26(1):99-114. doi: https://doi.org/10.1038/s41418-018-0212-6.

Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022;7(1):196. doi: https://doi.org/10.1038/s41392-022-01046-3.
Publicado
2025-06-06
Cómo citar
Sun, F., & Huang, W. (2025). The p300-NF-κB pathway induces the activation of the NLRP3 inflammasome and the pyroptosis of neurons in an in vitro model of Alzheimer’s disease.: En el modelo in vitro de la enfermedad de Alzheimer, la vía p300 NF - Kappa B induce la activación del inflamasoma NLRP3 y la piroptosis neuronal en un modelo in vitro de la enfermedad de Alzheimer. Investigación Clínica, 66(2), 191-204. https://doi.org/10.54817/IC.v66n2a06
Sección
Trabajos Originales