Vitrificación de embriones bovinos cultivados en un medio suplementado con β-mercaptoetanol
Resumen
Los objetivos de este trabajo fueron evaluar diferentes concentraciones de β-mercaptoetanol durante el cultivo in vitro de embriones bovinos y determinar el efecto de la vitrificación en la supervivencia de embriones cultivados en un medio suplementado con ß-ME. Experimento 1: post-fertilización, los cigotos fueron asignados a grupos de cultivo con 0, 50, 100 y 150 µM de β-ME. Experimento 2: los cigotos se cultivaron en presencia o ausencia de 100 µM de β-ME y fueron vitrificados por el método Cryologic. Se determinó la supervivencia, el total de células e índice de apoptosis como indicadores de calidad y criotolerancia. La tasa de división sigue una tendencia lineal negativa y fue menor a una concentración de 150 µM de β-ME, no encontrándose diferencias entre las demás concentraciones. El porcentaje de embriones sigue una tendencia cuadrática con una mayor respuesta a una concentración de 100 µM de β-ME. La suplementación con 100 µM de β-ME aumentó la supervivencia, el total de células y redujo la apoptosis. Se evidenció que la suplementación del medio de cultivo con β-ME (100 µM) aumenta el porcentaje de embriones, la supervivencia y el número de células posterior a la vitrificación por el método Cryologic y reduce la apoptosis.
Descargas
Citas
Anchordoquy JP, Lizarraga RM, Anchordoquy JM, Nikoloff N, Rosa DE, Fabra MC, Peral-García P, & Furnus CC. (2019). Effect of cysteine, glutamate and glycine supplementation to in vitro fertilization medium during bovine early embryo development. Reproductive Biology, 19(4): 349–355. https://doi.org/10.1016/j.repbio.2019.10.002
Caamaño JN, Ryoo ZY, Thomas JA, & Youngs CR. (1996). β-Mercaptoethanol Enhances Blastocyst Formation Rate of Bovine in vitro-Matured/in vitro-Fertilized Embryos1. Biology Reproduction, 55(5), 1179–1184. https://doi.org/10.1095/biolreprod55.5.1179
Caamaño JN, Zae YR, & Youngs CR. (1998). Promotion of Development of Bovine Embryos Produced In Vitro by Addition of Cysteine and β-Mercaptoethanol to a Chemically Defined Culture System. Journal of Dairy Science, 81(2): 369–374. https://doi.org/10.3168/jds.s0022-0302(98)75586-9
Choe C, Yong SS, Eun KK, Cho SR, Hyun JK, Choi S, Han M, Han J, Son D, & Kang D. (2010). Synergistic Effects of Glutathione and BETA-Mercaptoethanol Treatment During In Vitro Maturation of Porcine Oocytes on Early Embryonic Development in a Culture System Supplemented with L-cysteine. Journal of Reproduction and Development, 56(6): 575–582. https://doi.org/10.1262/jrd.09-214h
de Mattos K, Pena BCA, Campagnolo K, Borba de Oliveira G, Ticiani E, Pinzón OCA, da Silva FAL., da Silva FH, Rodrigues JL, Bertolini M, Mezzallira A, & de Souza RE. (2022). β-Mercaptoethanol in culture medium improves cryotolerance of in vitro-produced bovine embryos. Zygote, 30(6): 830–840. https://doi.org/10.1017/s0967199422000338
Ferré LB, Kjelland ME, Taiyeb AM, Campos‐Chillon F, & Ross PJ. (2020). Recent progress in bovine in vitro‐derived embryo cryotolerance: Impact of in vitro culture systems, advances in cryopreservation and future considerations. Reproduction in Domestic Animals. 55(6): 659–676. https://doi.org/10.1111/rda.13667
Feugang JM, De Roover R, Moens A, Léonard S, Dessy F, & Donnay I. (2004). Addition of β-mercaptoethanol or Trolox® at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents. Theriogenology, 61(1): 71–90. https://doi.org/10.1016/s0093-691x(03)00191-2
Gallego F, Mancheno A, Mena L, & Murillo A. (2022). Bovine in vitro Embryo Production: State of the Art. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 172–185. https://doi.org/10.18502/espoch.v2i2.11192.
Hamano S, Kuwayama M, Takahashi M, Okamura N, Okano A, & Nagai T. (1994). Effect of β-Merchaptoethanol on the Preimplantation Development of Bovine Embryos Fertilized In Vitro. Journal of Reproduction and Development, 40(4): 355–359. https://doi.org/10.1262/jrd.40.355
Hosseini SM, Forouzanfar M, Hajian M, Asgari V, Abedi P, Hosseini L, Ostadhosseini S, Moulavi F, Safahani M, Sadeghi H, Bahramian H, Eghbalsaied S, & Nasr-Esfahani MH. (2009). Antioxidant supplementation of culture medium during embryo development and/or after vitrification-warming; which is the most important? Journal of Assisted Reproduction and Genetics, 26(6): 355–364. https://doi.org/10.1007/s10815-009-9317-7
Khazaei M & Aghaz F. (2017). Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. Int. Journal Fertility and Sterility, 11(2): 63–70. https://doi.org/10.22074/ijfs.2017.4995
Mahmoud KGM, El-Sokary MMM, Kandiel MMM, Abou El-Roos MEA, & Sosa GMS. (2016). Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, Summer, 17(3): 165- 170. https://doi:10.22099/IJVR.2016.3810
Masaya G, Yonai M, Sakaguchi M, & Nagai T. (1999). Improvement of in vitro co-culture systems for bovine embryos using a low concentration of carbon dioxide and medium supplemented with β-mercaptoethanol. Theriogenology, 51(3): 551–558. https://doi.org/10.1016/s0093-691x(99)00009-6
Maslichah M, & Makuwira J. (2023). Analysis of mice (Mus Musculus L.) and hamster embryo development using culture and vitrification medium: Systematic review. Open Veterinary Journal, 13(2): 143–143. https://doi.org/10.5455/ovj.2023.v13.i2.2
Moussa M, Yang CY, Zheng HY, Li MQ, Yu NQ, Yan SF, Huang JX, & Shang JH. (2019). Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology, 125: 317–323. https://doi.org/10.1016/j.theriogenology.2018.11.013
Ranjbar A, Amin M, Mehran, & Moghadam F. (2019). Effect of Cysteamine and 13-Cis-Retinoic Acid on Bovine In Vitro Embryo Production. Kafkas Üniversites Veteriner Fakültesi Dergisi, 25(2):231-237. https://doi.org/10.9775/kvfd.2018.20778
Ribeiro ES, Gonçalves MC, Pedrotti MC, Martins LT, Gerger RPC, Vieira FK, Tavares KCS, Bertolini M, & Mezzalira A. (2009). 74 Effect of beta-mercaptoethanol on the vitrification cryotolerance of bovine in vitro-produced embryos. Reproduction, Fertility and Development, 21(1): 137-138. https://doi.org/10.1071/rdv21n1ab74
Rocha FNA de S, Leão BC da S, Nogueira É, Accorsi MF, & Mingoti, GZ. (2015). Effects of gaseous atmosphere and antioxidants on the development and cryotolerance of bovine embryos at different periods of in vitro culture. Zygote, 23(2): 159–168. https://doi.org/10.1017/s0967199413000361
Rocha FNA de S, Leão BCS, Nogueira E, Accorsi MF, & Gisele ZM. (2014). Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants. Reproduction, Fertility and Development, 26(6): 797–797. https://doi.org/10.1071/rd12354
Sandal AI. (2018). In vitro maturation of bovine oocytes: beneficial effects of cysteamine. Journal of Dairy, Veterinary & Animal Research, 7(2): 64-65. https://doi.org/10.15406/jdvar.2018.07.00191
SAS. (1996). User´s guide. Statistics. Inst Inc.
Sidi S, Bogado OP, Velez AD, Nima AD, Krishna CP, Gretania R, Meese T, Filip Van N, Bawa EK, Voh AA, Olusegun JA, & Van Soom A. (2022). Lycopene Supplementation to Serum-Free Maturation Medium Improves In Vitro Bovine Embryo Development and Quality and Modulates Embryonic Transcriptomic Profile. Antioxidants 11(2): 344–344. https://doi.org/10.3390/antiox11020344
Software estadístico MINITAB 19. (2019). State College, PA Mnitab,Inc.
Soto HS, & Paramio MT. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132: 342–350. https://doi.org/10.1016/j.rvsc.2020.07.013
Sovernigo T, Adona P, Monzani P, Guemra S, Barros F, Lopes F, & Leal C. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 52(4): 561–569. https://doi.org/10.1111/rda.12946
Takahashi M, Nagai T, Hamano S, Kuwayama M, Okamura N, & Okano A. (1993). Effect of Thiol Compounds on in Vitro Development and Intracellular Glutathione Content of Bovine Embryos. Biology Reproduction, 49(2): 228–232. https://doi.org/10.1095/biolreprod49.2.228
Torres V, Urrego R, Echeverri JJ, & López A. (2019). Estrés oxidativo y el uso de antioxidantes en la producción in vitro de embriones mamíferos. Revisión. Revista Mexicana de Ciencias Pecuarias, 10(2): 433–459. https://doi.org/10.22319/rmcp.v10i2.4652
Truong TT & Gardner DK. (2017). Antioxidants increase blastocyst cryosurvival and viability post-vitrification. Human Reproduction, 35(1): 12–23. https://doi.org/10.1093/humrep/dez243.
Vandaele L, Mateusen B, Maes D, de Kruif A, & Van Soom A. (2006). Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility? Theriogenology, 65(9): 1691–1703. https://doi.org/10.1016/j.theriogenology.2005.09.014
Viana JHM, Figueiredo ACS, Gonçalves RLR, & Siqueira LGB. (2018). A historical perspective of embryo-related technologies in South America. Animal Reproduction., 15(Suppl. 1): 963–970. https:// doi/10.21451/1984-3143-AR2018-0016.
Derechos de autor 2025 Emilia Rosa Lliteras-Martínez, Alejandro Palacios-Espinosa, Victor Manuel Meza-Villalvazo, José Abad-Zavaleta, Peter Bols, José Luis Espinoza-Villavicencio, Ricardo Ortega-Pérez
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
Copyright
La Revista de la Universidad del Zulia declara que reconoce los derechos de los autores de los trabajos originales que en ella se publican; dichos trabajos son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y comparten sin propósitos comerciales, según la licencia adoptada por la revista..
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)