Vitrification of Bovine Embryos Cultured in a Medium Supplemented with β-Mercaptoetanol

Keywords: Antioxidant, Cryopreservation, Cryosurvival, Bovine embryo

Abstract

This study aimed to evaluate different concentrations of β-mercaptoethanol (β-ME) during in vitro culture of bovine embryos and determine the effect of vitrification on survival rate of embryos cultured in a medium supplemented with ß-ME. Experiment 1: Post-fertilization, zygotes were assigned to culture groups with 0, 50, 100 and 150 µM β-ME. Experiment 2: zygotes were cultured in presence or absence of 100 µM β-ME followed by vitrification by Cryologic method. Survival, total cell number and apoptotic rate were used as quality and cryotolerance indicator. Cleavage rate follows a negative linear trend, and it was lower at 150 µM concentration of β-ME, no differences were found between the other concentrations. Percentage of embryos follows a quadratic trend showing the greatest response to a concentration of 100 µM of β-ME. It was shown that supplementation with 100 µM of β-ME during in vitro culture increased survival rate and total cells number and reduced the apoptosis. 

Downloads

Download data is not yet available.

Author Biographies

Emilia Rosa Lliteras-Martínez, Autonomous University of Baja California Sur, Mexico.

Autonomous University of Baja California Sur, Mexico.

Alejandro Palacios-Espinosa, Autonomous University of Baja California Sur, Mexico.

Autonomous University of Baja California Sur, Mexico.

Victor Manuel Meza-Villalvazo, Universidad del Papaloapan, Mexico

Papaloapan University, Tuxtepec Campus, Mexico.

José Abad-Zavaleta, Papaloapan University, Mexico

Papaloapan University, Tuxtepec Campus, Mexico.

Peter Bols, University of Antwerp, Belgium

University of Antwerp, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Veterinary Physiology, Belgium.

José Luis Espinoza-Villavicencio, Autonomous University of Baja California Sur, Mexico

Autonomous University of Baja California Sur, Mexico

Ricardo Ortega-Pérez, Autonomous University of Baja California Sur, Mexico

Autonomous University of Baja California Sur, Mexico

References

Ahmed EA, Sindi RA, Nasra AY, Hussein HA, Badr MA, Syaad A, Al-Saeed FA, Saad A, Abdelrahman M, & Montaser EA. (2023). Impact of epidermal growth factor and/or β-mercaptoethanol supplementations on the in vitro produced buffaloes’ embryos. Frontiers in Veterinary Science, 10: 1-11 https://doi.org/10.3389/fvets.2023.1138220

Anchordoquy JP, Lizarraga RM, Anchordoquy JM, Nikoloff N, Rosa DE, Fabra MC, Peral-García P, & Furnus CC. (2019). Effect of cysteine, glutamate and glycine supplementation to in vitro fertilization medium during bovine early embryo development. Reproductive Biology, 19(4): 349–355. https://doi.org/10.1016/j.repbio.2019.10.002

Caamaño JN, Ryoo ZY, Thomas JA, & Youngs CR. (1996). β-Mercaptoethanol Enhances Blastocyst Formation Rate of Bovine in vitro-Matured/in vitro-Fertilized Embryos1. Biology Reproduction, 55(5), 1179–1184. https://doi.org/10.1095/biolreprod55.5.1179

Caamaño JN, Zae YR, & Youngs CR. (1998). Promotion of Development of Bovine Embryos Produced In Vitro by Addition of Cysteine and β-Mercaptoethanol to a Chemically Defined Culture System. Journal of Dairy Science, 81(2): 369–374. https://doi.org/10.3168/jds.s0022-0302(98)75586-9

Choe C, Yong SS, Eun KK, Cho SR, Hyun JK, Choi S, Han M, Han J, Son D, & Kang D. (2010). Synergistic Effects of Glutathione and BETA-Mercaptoethanol Treatment During In Vitro Maturation of Porcine Oocytes on Early Embryonic Development in a Culture System Supplemented with L-cysteine. Journal of Reproduction and Development, 56(6): 575–582. https://doi.org/10.1262/jrd.09-214h

de Mattos K, Pena BCA, Campagnolo K, Borba de Oliveira G, Ticiani E, Pinzón OCA, da Silva FAL., da Silva FH, Rodrigues JL, Bertolini M, Mezzallira A, & de Souza RE. (2022). β-Mercaptoethanol in culture medium improves cryotolerance of in vitro-produced bovine embryos. Zygote, 30(6): 830–840. https://doi.org/10.1017/s0967199422000338

Ferré LB, Kjelland ME, Taiyeb AM, Campos‐Chillon F, & Ross PJ. (2020). Recent progress in bovine in vitro‐derived embryo cryotolerance: Impact of in vitro culture systems, advances in cryopreservation and future considerations. Reproduction in Domestic Animals. 55(6): 659–676. https://doi.org/10.1111/rda.13667

Feugang JM, De Roover R, Moens A, Léonard S, Dessy F, & Donnay I. (2004). Addition of β-mercaptoethanol or Trolox® at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents. Theriogenology, 61(1): 71–90. https://doi.org/10.1016/s0093-691x(03)00191-2

Gallego F, Mancheno A, Mena L, & Murillo A. (2022). Bovine in vitro Embryo Production: State of the Art. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 172–185. https://doi.org/10.18502/espoch.v2i2.11192.

Hamano S, Kuwayama M, Takahashi M, Okamura N, Okano A, & Nagai T. (1994). Effect of β-Merchaptoethanol on the Preimplantation Development of Bovine Embryos Fertilized In Vitro. Journal of Reproduction and Development, 40(4): 355–359. https://doi.org/10.1262/jrd.40.355

Hosseini SM, Forouzanfar M, Hajian M, Asgari V, Abedi P, Hosseini L, Ostadhosseini S, Moulavi F, Safahani M, Sadeghi H, Bahramian H, Eghbalsaied S, & Nasr-Esfahani MH. (2009). Antioxidant supplementation of culture medium during embryo development and/or after vitrification-warming; which is the most important? Journal of Assisted Reproduction and Genetics, 26(6): 355–364. https://doi.org/10.1007/s10815-009-9317-7

Khazaei M & Aghaz F. (2017). Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. Int. Journal Fertility and Sterility, 11(2): 63–70. https://doi.org/10.22074/ijfs.2017.4995

Mahmoud KGM, El-Sokary MMM, Kandiel MMM, Abou El-Roos MEA, & Sosa GMS. (2016). Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, Summer, 17(3): 165- 170. https://doi:10.22099/IJVR.2016.3810

Masaya G, Yonai M, Sakaguchi M, & Nagai T. (1999). Improvement of in vitro co-culture systems for bovine embryos using a low concentration of carbon dioxide and medium supplemented with β-mercaptoethanol. Theriogenology, 51(3): 551–558. https://doi.org/10.1016/s0093-691x(99)00009-6

Maslichah M, & Makuwira J. (2023). Analysis of mice (Mus Musculus L.) and hamster embryo development using culture and vitrification medium: Systematic review. Open Veterinary Journal, 13(2): 143–143. https://doi.org/10.5455/ovj.2023.v13.i2.2

Moussa M, Yang CY, Zheng HY, Li MQ, Yu NQ, Yan SF, Huang JX, & Shang JH. (2019). Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology, 125: 317–323. https://doi.org/10.1016/j.theriogenology.2018.11.013

Ranjbar A, Amin M, Mehran, & Moghadam F. (2019). Effect of Cysteamine and 13-Cis-Retinoic Acid on Bovine In Vitro Embryo Production. Kafkas Üniversites Veteriner Fakültesi Dergisi, 25(2):231-237. https://doi.org/10.9775/kvfd.2018.20778

Ribeiro ES, Gonçalves MC, Pedrotti MC, Martins LT, Gerger RPC, Vieira FK, Tavares KCS, Bertolini M, & Mezzalira A. (2009). 74 Effect of beta-mercaptoethanol on the vitrification cryotolerance of bovine in vitro-produced embryos. Reproduction, Fertility and Development, 21(1): 137-138. https://doi.org/10.1071/rdv21n1ab74

Rocha FNA de S, Leão BC da S, Nogueira É, Accorsi MF, & Mingoti, GZ. (2015). Effects of gaseous atmosphere and antioxidants on the development and cryotolerance of bovine embryos at different periods of in vitro culture. Zygote, 23(2): 159–168. https://doi.org/10.1017/s0967199413000361

Rocha FNA de S, Leão BCS, Nogueira E, Accorsi MF, & Gisele ZM. (2014). Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants. Reproduction, Fertility and Development, 26(6): 797–797. https://doi.org/10.1071/rd12354

Sandal AI. (2018). In vitro maturation of bovine oocytes: beneficial effects of cysteamine. Journal of Dairy, Veterinary & Animal Research, 7(2): 64-65. https://doi.org/10.15406/jdvar.2018.07.00191

SAS. (1996). User´s guide. Statistics. Inst Inc.

Sidi S, Bogado OP, Velez AD, Nima AD, Krishna CP, Gretania R, Meese T, Filip Van N, Bawa EK, Voh AA, Olusegun JA, & Van Soom A. (2022). Lycopene Supplementation to Serum-Free Maturation Medium Improves In Vitro Bovine Embryo Development and Quality and Modulates Embryonic Transcriptomic Profile. Antioxidants 11(2): 344–344. https://doi.org/10.3390/antiox11020344

Software estadístico MINITAB 19. (2019). State College, PA Mnitab,Inc.

Soto HS, & Paramio MT. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132: 342–350. https://doi.org/10.1016/j.rvsc.2020.07.013

Sovernigo T, Adona P, Monzani P, Guemra S, Barros F, Lopes F, & Leal C. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 52(4): 561–569. https://doi.org/10.1111/rda.12946

Takahashi M, Nagai T, Hamano S, Kuwayama M, Okamura N, & Okano A. (1993). Effect of Thiol Compounds on in Vitro Development and Intracellular Glutathione Content of Bovine Embryos. Biology Reproduction, 49(2): 228–232. https://doi.org/10.1095/biolreprod49.2.228

Torres V, Urrego R, Echeverri JJ, & López A. (2019). Estrés oxidativo y el uso de antioxidantes en la producción in vitro de embriones mamíferos. Revisión. Revista Mexicana de Ciencias Pecuarias, 10(2): 433–459. https://doi.org/10.22319/rmcp.v10i2.4652

Truong TT & Gardner DK. (2017). Antioxidants increase blastocyst cryosurvival and viability post-vitrification. Human Reproduction, 35(1): 12–23. https://doi.org/10.1093/humrep/dez243.

Vandaele L, Mateusen B, Maes D, de Kruif A, & Van Soom A. (2006). Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility? Theriogenology, 65(9): 1691–1703. https://doi.org/10.1016/j.theriogenology.2005.09.014

Viana JHM, Figueiredo ACS, Gonçalves RLR, & Siqueira LGB. (2018). A historical perspective of embryo-related technologies in South America. Animal Reproduction., 15(Suppl. 1): 963–970. https:// doi/10.21451/1984-3143-AR2018-0016.
Published
2025-01-05
How to Cite
Lliteras-Martínez, E. R., Palacios-Espinosa, A., Meza-Villalvazo, V. M., Abad-Zavaleta, J., Bols, P., Espinoza-Villavicencio, J. L., & Ortega-Pérez, R. (2025). Vitrification of Bovine Embryos Cultured in a Medium Supplemented with β-Mercaptoetanol. Journal of the University of Zulia , 16(45), 97-109. https://doi.org/10.5281/zenodo.14602061