Performance evaluation of HPS and HPS+FPGA hardware architectures for an image processing system

Keywords: Processing Algorithms; Hardware Architectures; SoC Platform; Performance; Image Processing

Abstract

The objective of this work was to evaluate the performance of hardware architectures: Hard Processor System (HPS) and the union of an HPS with a programmable gate array or FPGA (HPS + FPGA) for an image processing system. The following are evaluated: the execution time of the image processing algorithms and the energy consumption. For a SoC Platform, hardware design is performed at Verilog using the IP video cores of the Intel University Program (UP) - FPGA. The software for control and visualization of results using OpenCV is also developed. We worked with 320x240 pixels images. For a real time application it was observed an improvement of 38.8% in the execution time and a 6.85% higher consumption in the HPS+FPGA Architecture with respect to the HPS Architecture. The HPS+FPGA Architecture outperforms HPS and keeps power consumption low.

Downloads

Download data is not yet available.

Author Biographies

Cesar Arturo Niño Carmona, Universidad Nacional de Piura. Perú.

Docente Asociado. Universidad Nacional de Piura. Perú. 

Manuel Jesús Sánchez-Chero, Universidad Nacional de Frontera. Perú.
Docente Investigador. Universidad Nacional de Frontera. Perú.
Emanuel Ortiz Ortiz, Universidad Nacional de Piura. Perú

Bachiller. Universidad Nacional de Piura. Perú.

Juan Carlos Sernaque Julca, Universidad Nacional de Piura. Perú.

Bachiller. Universidad Nacional de Piura. Perú.

Cecilia Lizeth Risco Ipanaqué, Universidad Nacional de Frontera. Perú

Jefa (E) de la Unidad de Tecnología de Información y Comunicación. Universidad Nacional de Frontera. Perú. 

References

Bradski, G. y Kaehler, A. (2008). Learning OpenCV. Primera Edición. Sebastopol: O’Reilly Media, Inc.

Docs.Opencv.Org. (2020). Conversiones de espacio de color. Recuperado de https://docs.opencv.org/3.4/d8/d01/group__imgproc__color__conversions.html#ga4e0972be5de079fed4e3a10e24ef5ef0.

Docs.Opencv.Org. (2020). Detector Canny Edge. Recuperado de https://docs.opencv.org/3.4/da/d5c/tutorial_canny_detector.html.

Dovyski .Github.Io. (2018). Cvui. Recuperado de https://dovyski.github.io/cvui/.

Espinoza, H. (2016). Diseño e implementación de un sistema de seguridad y alerta para vehículos, basado en reconocimiento facial y localización gps, en una Raspberry pi b plus. Proyecto previo a la obtención del Título de Ingeniero en Electrónica y Control. Escuela Politécnica Nacional.

Frazer, R. (2017). Release tutorials-v1.0.0. Recuperado de https://github.com/intel-iot-devkit/terasic-de10-nano-kit/releases.

Intel Corporation. (2018). Fpga University Program. Video IP Cores for Intel® DE-Series Boards. University Program.

Martínez, O. (2018). Diseño de un SOPC (system on programmable chip) para el control de una cámara de 5MP con pantalla táctil en el entorno de trabajo de la tarjeta DE2-115 de Altera. Memoria TFM. Universitat Politècnica De València.

Mittal, S. y Vetter, J. A. (2015). Survey of Methods for Analyzing and Improving GPU Energy Efficiency, ACM Computing Surveys.

Pimpale, A. (2015). Optimized Systolic Array Design For Median Filter In Image Filtration. Tesis para optar el título de Master of Technology In Digital Communication. Patel College of Science & Technology, Bhopal.

Terasic Inc. (2018). DE10-Nano Cyclon V SoC with Dual-core ARM Cortex A9 - User Manual. Primera Edicion. Terasic Inc.

Published
2021-01-13
How to Cite
Niño Carmona, C. A., Sánchez-Chero, M. J., Ortiz Ortiz, E., Sernaque Julca, J. C., & Risco Ipanaqué, C. L. (2021). Performance evaluation of HPS and HPS+FPGA hardware architectures for an image processing system. Journal of the University of Zulia , 12(32), 358-373. https://doi.org/10.46925//rdluz.32.22

Most read articles by the same author(s)