Analysis of the structural behavior of flat and circular self-supporting roof using finite elements

Keywords: Construction engineering, structural design, self-supporting roof, weight

Abstract

The development and innovation of Science, specifically in the branch of construction in Civil engineering, has led the implementation of new alternatives in analysis, design and construction of industrial buildings. For this reason, in this research it was proposed to carry out a study of structural behavior of two types of self-supporting roofs: flat and circular, which were analyzed using computational tools for simulation through finite elements, in which initially the structure made up of columns, beams and steel sheets was completely modeled with an equivalent cross section, which made up the self-supporting roofs; then only the steel sheets with real cross section were discretized, and it was noted that in the extremes were the greatest stresses generated by the application of horizontal and vertical loads; and the maximum displacement of the circular roof was 14.32 % of the flat one.

Downloads

Download data is not yet available.

Author Biographies

David Patricio Guerrero-Cuasapaz, Salesian Polytechnic University

Professor. Civil Engineering Department, Salesian Polytechnic University. Quito, Ecuador.

Milton Bolívar Guerrón-Figueroa, Salesian Polytechnic University

Professor. Civil Engineering Department, Salesian Polytechnic University. Quito, Ecuador.

José Luis Pilamunga-Guallpa, Salesian Polytechnic University.

Professor. Civil Engineering Department, Salesian Polytechnic University. Quito, Ecuador.

Cristhian Daniel Páez-Redrován, Salesian Polytechnic University

Professor. Civil Engineering Department, Salesian Polytechnic University. Quito, Ecuador.

Nelson Andrés López-Machado, Pontifical Catholic University of Chile

Professor. Structural and Geotechnical Engineering Department, Pontifical Catholic
University of Chile. Santiago, Chile.

References

Açoport (2021). Açoport Telhas Autoportantes. http://acoport.com.br/telhas-autoportantes/dados- tecnicos/

AISC (2016). Specification for Structural Steel Buildings Supersedes the Specification for Structural Steel Buildings dated and all previous versions Approved by the Committee on Specifications.

AISI (2016). North American Specification for the Design of Cold-Formed Steel Structural Membe (N.o 2016). 1-505. https://cfsei.memberclicks.net/assets/docs/publications/aisi-standards/aisi s100-16 s100- 16-c_e_s.pdf

ANSYS (2021). Ansys Academic | Simulation Software for Educators, Researchers and Students. https://www.ansys.com/academic

Arnedo Pena, A. (2016). Naves industriales con acero. Sener, 97. www.sener.es

ASTM A653 (2020). ASTM A653 / A653M - 20 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process. https://www.astm.org/Standards/A653.htm

Cuichán Velasco, A. S., & Escuela Politécnica Nacional (2016). Análisis y diseño de una nave industrial y sus respectivas fosas dentro del taller «Chiriyacu» para ferrocarriles del Ecuador Empresa Pública F.E.E.P.

Durma (2016). Las cubiertas autoportantes y sus características - Estructuras Metálicas. https://www.durmametal.com/las-cubiertas-autoportantes-caracteristicas/

Fernández Madrid, J. (1998). La cubierta plana. Tectónica: monografías de arquitectura, tecnología y construcción, 6, 1-16.

Lee, H. H. (2019). Finite element simulation with ANSYS Workbench 2019 (SDC Publications (ed.); Primera ed).

Loachamin Chano, D. F., Freire Luna, A. E., Guerrero Cuasapaz, D. P., & Guerrón Figueroa, M. B. (2021). Análisis técnico-económico de naves industriales mediante interpolación no lineal de Lagrange. Revista Técnica de la Facultad de Ingeniería Universidad Del Zulia, 44(2), 1-15. https://doi.org/https://doi.org/10.22209/rt.v44n2a05

Nápoles Padrón, E., González Carbonell, R., & Olivares Díaz, E. (2015). Una introducción al análisis por elementos finitos: aplicaciones y ejemplos (E. Piñero de Laosa (ed.); Primera). Editorial Universitaria. https://www.researchgate.net/publication/283151622

NEC Cargas no sísmicas (2014). Cargas no sísmicas. Norma Ecuatoriana de la Construcción, 1-44. NEC Peligro sísmico (2014). Peligro sísmico. Norma Ecuatoriana de la Construcción, 1-148.

Páez Redrován, C. D., & Universidad Politécnica Salesiana (2020). Método de elementos finitos aplicado a cubiertas autoportantes tipo circular. En Tesis. Universidad Politécnica Salesiana.

Pilamunga Guallpa, J. L., & Universidad Politécnica Salesiana (2021). Simulación de una cubierta plana autoportante y su conexión con las vigas laterales mediante la aplicación de elementos finitos. En Tesis. Universidad Politécnica Salesiana.

Proingcol (2021). Cubiertas autoportantes – Proing LTDA | Manlift & Cubiertas autoportantes. https://proingcol.co/cubiertas-autoportantes/

Ruiz Sancho, J. M. (2003). Geometria análitica del plano y del espacio (Anaya Educación (ed.); 2003.a ed.).

Sanxing (2021). Yingkou Sanxing Roll Forming Machine Co., Ltd. - Building Material Machinery. https://yk-sanxing.en.alibaba.com/

SAP 2000. (2021). SAP2000 | STRUCTURAL ANALYSIS AND DESIGN. https://www.csiamerica.com/products/sap2000

Soria Carrasco, H. D., & Escuela Politécnica Nacional (2020). Análisis tecno económico entre galpones con cubiertas autoportantes y cubiertas a dos aguas con luces de 20 metros fabricadas en acero estructural. Escuela Politécnica Nacional.

Vásquez, M., & López, E. (2001). El método de los elementos finitos aplicado al análisis estructural (Noela-Madrid (ed.); Primera). https://www.academia.edu/38827344/El_método_de_los_Elementos_Finitos_aplicado_al_anális is_estructural_Manuel_Vázquez_Eloísa_López
Published
2022-01-13
How to Cite
Guerrero-Cuasapaz, D. P., Guerrón-Figueroa, M. B., Pilamunga-Guallpa, J. L., Páez-Redrován, C. D., & López-Machado, N. A. (2022). Analysis of the structural behavior of flat and circular self-supporting roof using finite elements. Journal of the University of Zulia , 13(36), 222-240. https://doi.org/10.46925//rdluz.36.15