Evaluación del contenido de clorofila y la estabilidad de la membrana bajo estrés oxidativo inducido por el herbicida glifosato como indicadores de tolerancia a la sequía en algunas líneas avanzadas de trigo duro (Triticum durum L.): estudio in vitro

Palabras clave: fuga de electrolitos, pérdida de clorofila, tolerancia, sensibilidad

Resumen

El estrés oxidativo causado por el glifosato es un fenómeno químico y fisiológico complejo y se desarrolla como resultado de la sobre producción y acumulación de especies reactivas del oxígeno (ROS). Este estudio se llevó a cabo in vitro en el Instituto Nacional de Investigación Agronómica de Argelia (INRAA) Setif, para seleccionar el trigo duro (Triticum durum L.) más susceptible bajo estrés oxidativo inducido por el herbicida glifosato mediante la evaluación de la degradación del contenido de clorofila y la fuga de la membrana celular. Los genotipos mostraron variaciones significativas en casi todos los rasgos estudiados. El índice de pérdida de clorofila osciló entre el 26,42 % del genotipo G5 y el 48,75 % de la variedad local Boutaleb, y los valores del índice de sensibilidad al glifosato se situaron entre 0,65 y 1,2. La línea avanzada G5 resultó ser la más tolerante al estrés oxidativo, con el menor índice de pérdida de clorofila y el menor índice de sensibilidad al glifosato. Además, la línea avanzada G4 registró la mayor pérdida de electrolitos (80,16 %), mientras que G6 mostró la estimación más baja (50,77 %). Por lo tanto, las líneas avanzadas G5 y G6 parecen las más adecuadas para las condiciones de crecimiento.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahsan, N., Lee, D.G., Lee, K.W., Alam, I., Lee, S.H., Bahk, J.D., Lee, B.H. (2008). Glyphosate induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry 46, 1062–1070. https://doi.org/10.1016/j.plaphy.2008.07.002.
Bajji, M., Lutts, S and Kinet, J.M. (2001). Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science 160(4): 669–681. https://doi.org/10.1016/S0168-9452(00)00443-X.
Bali, A.S., Sidhu, G.P.S. (2019). Abiotic Stress-Induced Oxidative Stress in Wheat. M. Hasanuzzaman et al. (eds.), Wheat Production in Changing Environments, Springer Nature Singapore Pte Ltd. https://doi.org/10.1079/9781789248098.0019.
Caglar, O., Ozturk, A., Aydin, M., Bayram, S. (2011). Paraquat tolerance of bread wheat (Triticum aestivum L.) Genotypes. Journal of animal and veterinary advances 10: 3363-3367. https://doi.org/10.3923/javaa.2011.3363.3367.
Enneb, H., Ben Yahya, L., Ilyas, M., Asaram Dhale, D., Bagues, M and Nagaz, K. (2020). Influence of Water Stress on Growth, Chlorophyll Contents and Solute Accumulation in Three Accessions of Vicia faba L.from Tunisian Arid Region. Abiotic stress in plants. http://dx.doi.org/10.5772/intechopen.94563.
FAO. Food and Agriculture Organization. Crop Prospects and Food Situation - Quarterly Global Report n°. 4, December (2020). Rome. http://www.fao.org/faostat/en/#data/QC.
Freitas-Silva, L., Rodríguez-Ruiz, M., Houmani, H., da Silva, L.C., Palma, J.M., and Corpas F.J. (2017). Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. Journal Plant Physiology. 218: 196–205. https://doi.org/10.1016/j.jplph.2017.08.007.
Gomes, M. P., Le Manac’h, S. G., Hénault-Ethier, L., Labrecque, M., Lucotte, M and Juneau, P. (2017). Glyphosate-Dependent Inhibition of Photosynthesis in Willow. Frontiers in Plant Science. 8: 207. https://doi.org/10.3389/fpls.2017.00207.
Gomes, M.P., Smedbol, E., Chalifour, A, Hénault-Ethier, L., Labrecque, M., Lepage, L., Lucotte, M., Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. Journal of Experimental Botany, Vol. 65, No. 17, pp. 4691–4703. https://doi.org/10.1093/jxb/eru269.
Ibrahim, R.I.H., Alkhudairi, U.A., Alhusayni, S.A.S. (2022). Alleviation of Herbicide Toxicity in Solanum lycopersicum L.-An Antioxidant Stimulation Approach. Plants 2022, 11(17), 2261. https://doi.org/10.3390/plants11172261.
Karabulut, F., and Çanakcı, S. (2021). Effects of Glyphosate Herbicide on Photosynthetic Pigments and Antioxidant Enzyme Activities in Corn (Zea mays L.) and Wheat (Triticum aestivum L.) Varieties. Journal of Physical Chemistry and Functional Materials. Volume 4, Issue 2 (2021) 61-66. https://doi.org/10.54565/jphcfum.1004433.
Khalilzadeh, R., Sharifi, R., and Jalilian, J. (2016). Antioxidant status and physiological responses of wheat (Triticum aestivum L.) to cycocel application and bio fertilizers under water limitation condition. Journal of Plant Interactions, 11:1, 130-137. https://doi.org/10.1080/17429145.2016.1221150.
Malalgoda, M., Ohm, J.B, Howatt, K.A., Simsek, S. (2020). Pre-harvest glyphosate application and effects on wheat starch chemistry: Analysis from application to harvest. Journal of Food Biochemistry. https://doi.org/10.1111/jfbc.13330.
Masoumi, A., Kafi, M., Khazaei, H., Davari, K. (2010). Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of kochia (kochia scoparia) under saline condition. Pakistan Journal of Botany 42(5): 3517-3524.
Oulmi, A., and Aissaoui, M.R. (2022). Canopy temperature and chlorophyll content as plant traits indicators for durum wheat (Triticum durum Desf. ) superior lines selection under semi-arid conditions. Agricultural Science and Technology, VOL. 14, (2), 114-122. https://doi.org/10.15547/ast.2022.02.027.
Rivas-Garcia, T., Espinosa-Calderón, A., Hernández-Vázquez, B., and Schwentesius-Rindermann, R. (2022). Overview of Environmental and Health Effects Related to Glyphosate Usage. Sustainability, 14(11), 6868. https://doi.org/10.3390/su14116868.
Sakya, A.T., Sulistyaningsih, E., Indradewa, D., and Purwanto, B.H. (2018). Physiological characters and tomato yield under drought stress. IOP Conference Series: Earth and Environmental Science 200 (2018) 012043. https://doi.org/10.1088/1755-1315/200/1/012043.
Silva, K.S., Urban, L.J. K., Balbinota, A., Gnocato, F.S., KRUSE, N.D., Marchesan, E., and Machado, S.L.O. (2016). Electrolyte Leakage and the Protective Effect of Nitric Oxide On Leaves Of Flooded Rice Exposed To Herbicides. Planta Daninha 29(4):837-847. https://doi.org/10.1590/S0100-83582016340400018.
Singh, S.K, Kumar, J. P., Kaur G.S., Datta, S., Singh, V., Dhaka, D., Kapoor, A.B., Wani, D. S., Dhanjal, M., Kumar, L., Harikumar, and J. Singh. (2020). Herbicide Glyphosate: Toxicity and Microbial Degradation. International Journal of Environmental Research and Public Health, 17(20): 7519. https://doi.org/10.3390/ijerph17207519.
Singh, S.K., Barman, M., Prasad J.P., Bahuguna. R.N. (2022). Phenotyping diverse wheat genotypes under terminal heat stress reveal canopy temperature as critical determinant of grain yield. Plant Physiology Reports 27, 335-344. https://doi.org/10.1007/s40502-022-00647-y
Slama, A., Mallek-Maalej, E., Ben Mohamed, H., Rhim, T., Radhouane, L. (2018). A return to the genetic heritage of durum wheat to cope with drought heightened by climate change. PLoS ONE 13(5): e0196873.. https://doi.org/10.1371/journal.pone.0196873.
Soares, C., Pereira, R., Spormann, S., Fidalgo, F. (2019). Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants - evaluation of oxidative damage and antioxidant responses in tomato. Environmental pollution. 247, 256-265. https://doi.org/10.1016/j.envpol.2019.01.063.
Thakur, V., Rane, J., Nankar, A.N. (2022). Comparative Analysis of Canopy Cooling in wheat under High Temperature and Drought Stress. Agronomy 12(4), 978. https://doi.org/10.3390/agronomy12040978.
Zhu, M., Li F.H., Shi, Z.S. (2016). Morphological and photosynthetic response of waxy corn inbred line to waterlogging. Photosynthetica 54, 636–640. https://doi.org/10.1007/s11099-016-0203-0.
Zobiole, L.H.S., Kremer, R.J., Oliveira, J.R.S., Constantin, J., Oliveira RS. (2011). Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.). Pesticide Biochemistry and Physiology 99, 53–60. https://doi.org/10.1016/j.pestbp.2010.10.005.
Publicado
2023-02-04
Cómo citar
Benkadja, S., Oulmi, A., Frih, B., Bendada, H., Guendouz, A., & Benmahammed, A. (2023). Evaluación del contenido de clorofila y la estabilidad de la membrana bajo estrés oxidativo inducido por el herbicida glifosato como indicadores de tolerancia a la sequía en algunas líneas avanzadas de trigo duro (Triticum durum L.): estudio in vitro. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 40(1), e234007. Recuperado a partir de https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/39652
Sección
Producción Vegetal