Exudados gomosos de Prosopis spp. localizados en Ecuador: potencial prebióticos en la alimentación animal
Resumen
Alimentos de origen vegetal ricos en fibras se han ensayado como prebióticos (coadyuvante del crecimiento y actividad de la microbiota intestinal) en la producción animal, por su alto contenido en inulina y fibra, con la finalidad de disminuir el uso de antibióticos y la resistencia microbiana. El exudado gomoso producido por Acacia senegal, es una fuente de fibra nutricional que se ha ensayado como prebiótico en alimentación animal. El objeto de estudio fue analizar el potencial uso de fuentes noveles de exudados gomosos de Prosopis spp como prebióticos en animales de interés zootécnico con base a una revisión literaria sistemática en revistas indizadas del uso de gomas-hidrocoloides como suplemento alternativo en la alimentación animal. Los artículos científicos revisados evidencian los beneficios del uso del exudado gomoso de Acacia senegal como prebiótico en la producción de pollos de engorde, pavos, conejos y cerdos. Las gomas obtenidas de Prosopis spp presentan características fisicoquímicas y nutricionales análogas a las publicadas para la goma arábiga. Por lo tanto, con base a los reportes bibliográficos consultados el exudado gomoso obtenido de árboles de Prosopis spp localizados en Ecuador, podrían presentar un perfil nutricional con excelente contenido en fibra, oligosacáridos, minerales esenciales y compuestos fenólicos, lo cual potenciaría su uso como prebiótico promisorio en la alimentación animal, mejorando la función de la barrera intestinal, favoreciendo el crecimiento de la microbiota beneficiosa, reduciendo significativamente las poblaciones de bacterias patógenas, optimizando el bienestar y la producción animal.
Descargas
Citas
Abdalla, S.A., Abdel-Atti, K.A., Malik, H.E.E., Dousa, B.M. & Elamin K.M., (2015). Effect of Dietary Inclusion of Gum Arabic (Acacia senegal) on Performance and Blood Chemistry of Broiler Chicks. Global Journal of Animal Scientific Research, 3(2), 305-310. http://www.journals.wsrpublishing.com/index.php/gjasr/article/view/344
Al-Baadani, H. H., Al-Mufarrej, S. I., Al-Garadi, M. A., Alhidary, I. A., Al-Sagan, A. A. & Azzam, M.M. (2021). The use of gum Arabic as a natural prebiotic in animals: A review. Animal Feed Science and Technology, 274, 114894. https://www.sciencedirect.com/science/article/abs/pii/S0377840121000808
Al-Baadani, H.H.; Alhotan, R.A.; Al- Abdullatif, A.A.; Alhidary, I.A.; Alharthi, A.S.; Al-Mufarrej, S.I. & Azzam, M.M. (2022). The Effect of Gum Arabic Supplementation on Growth Performance, Blood Indicators, Immune Response, Cecal Microbiota, and the Duodenal Morphology of Broiler Chickens. Animals, 12, 2809, 1-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597837/pdf/animals-12-02809.pdf
Al-Fadil, S., Mukhtar, M.A. & Tabidi, M.H. (2013). Response of broiler chicks to diets containing Gum Arabic as a natural prebiotic. Journal of Current Research in Science 1, 247–253. http://www.jcrs010.com/files/151_JCRS_20130614(2).pdf
Ali, B.H., Beegam, S., Al-Lawati, I., Waly, M.I., Al Za’abi, M. & Nemmar, A. (2013). Comparative efficacy of three brands of gum acacia on adenine-induced chronic renal failure in rats. Physiological Research 62, 47–56. https://www.biomed.cas.cz/physiolres/pdf/62/62_47.pdf
Ahmed, A.A., Musa, H.H., Fedail, J.S., Sifaldin, A.Z. & Musa, T.H. (2016). Gum Arabic suppressed diet induced obesity by alteration the expression of mRNA levels of genes involved in lipid metabolism in mouse liver. Bioactive Carbohydrates and Dietary Fiber, 7, 15–20. https://doi.org/10.1016/j.bcdf.2016.01.002
Amber, K., Abd El-Nabi, F.M., Morsy, W.A. & Shama, S.H.A. (2017). Gum Arabic as prebiotic in growing rabbit’s diet. Global Veterinaria, 19, 465–471. https://www.researchgate.net/publication/366958267_Gum_Arabic_as_Prebiotic_in_Growing_Rabbits_Diet
Babiker, R., Merghani, T.H., Elmusharaf, K., Badi, R.M., Lang, F. & Saeed, A.M. (2012). Effects of Gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: two-arm randomized, placebo controlled, double blind trial. Nutrition Journal, 11, 1–7. https://doi.org/10.1186/1475-2891-11-111
Bayoumi, A.A., Mousa, M.A., Khosht, A.R., Salim, I.H., Shamseldeen, A.E., Arafa, A.S., El-deeb, M.A., Elkomy, H.M., & Mostafa, S.M. (2024). Effect of Dietary Inclusion of Gum Arabic (Acacia senegal) and Lactobacillus acidophilus or their Combination on Broiler Chickens. Journal of Desert and Environmental Agriculture, 4(2), 325-345. https://doi.org/10.21608/jdea.2024.293900.1053
Bosco, N.J. (2019). Some growth promoters already tried to replace antimicrobial growth promoter in weaned pig, according to a review. International Research Journal of Engineering and Technology, 6, 1741–1745. https://www.irjet.net/archives/V6/i4/IRJET-V6I4372.pdf
Burghardt, A. D., Brizuela, M., Mom, P., Albán, L. & Palacios, R. (2010) Análisis numérico de las especies de Prosopis L. (Fabaceae) de las costas de Perú y Ecuador Revista Peruana de Biología, 17(3), 317-323. https://revistasinvestigacion.unmsm.edu.pe/index.php/rpb/article/view/6/6
Clamens C., Rincón F., Sanabria L., Vera A. & León de Pinto G. (2000). Species widely disseminated in Venezuela which produce gum exudate. Food Hydrocolloids, 14(3), 253-257. https://doi.org/10.1016/S0268-005X(00)00004-7
El-Ratel, I.T., Ismail, R.F. & Fouda, S.F. (2019). Productive performance, carcass traits, lipid profile, antioxidants and immunity of growing rabbits treated with gum Arabic under Egyptian summer condition. Egyptian Journal of Nutrition and Feeds, 22, 143–154. https://ejnf.journals.ekb.eg/article_79436_69f39be98241bdc5a1c4460547d87c8d.pdf
Gibson, G.R., Hutkins, R. & Sanders, M.E. (2017). Expert consensus document: the International scientific Association for probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491–502. https://doi.org/10.1038/nrgastro.2017.75
Gultermirian, M.L., Corti, H.R., Pérez Chaia, A. & Apella, M.C. (2014). Fermentation of in vitro of a mixture of dietary fibers and cane molasses by the cecal microbiota: application on mineral absorption through the laying hens colonic epithelium. Animal Feed Science and Technology, 191, 76–82. https://doi.org/10.1016/j.anifeedsci.2014.01.019
Hu, Q., Gerhard, H., Upadhyaya, I., Venkitanarayanan, K., & Luo, Y. (2016). Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. International Journal of Biological Macromolecules, 87, 130-40 .https://doi.org/10.1016/j.ijbiomac.2016.02.051
Kamal, E., Kaddam, L.A., Dahawi, M., Osman, M., Salih, M.A., Alagib, A. & Saeed, A. (2018). Gum arabic fibers decreased inflammatory markers and disease severity score among rheumatoid arthritis patients, phase II trial. International Journal of Rheumatology, 1, 1–6. https://doi.org/10.1155/2018/4197537
Khalid, S.A., Musa, A.M., Saeed, A.M., Abugroun, E.A., Ahmed, E.O.S., Ghalib, M.B., Elnima, E.I., Alkarib, S.Y., Abdelsalam, T.M., Abdelgader, A. & Phillips, G.O. (2014). Manipulating dietary fibre: Gum Arabic making friends of the colon and the kidney. Bioactive Carbohydrates and Dietary Fiber, 3, 71–76. https://doi.org/10.1016/j.bcdf.2014.01.005
Khan S, Chand N, Hafeez A. & Ahmad, N. (2022). Effect of gum arabic on overall growth performance, visceral and lymphoid organs along with intestinal histomorphology and selected pathogenic bacteria of broiler chickens. Journal Animal Health and Production, 10(1), 73-80. http://dx.doi.org/10.17582/journal.jahp/2022/10.1.73.80
López-Franco Y., Córdova-Moreno R. E., Goycoolea F. M., Valdez M., Juárez-Onofre J. & Lizardi-Mendoza J. (2012). Classification and physicochemical characterization of mesquite gum (Prosopis spp). Food Hydrocolloids, 26, 159-166. https://doi.org/10.1016/j.foodhyd.2011.05.006 López-Franco Y.L., Gooycolea F.M. & Lizardi-Mendoza J. (2015). Gum of Prosopis/Acacia Species. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. 641–662. https://doi.org/10.1007/978-3-319-16298-0_14
McDougall, G. J. (2016). Phenolic-enriched foods: sources and processing for enhanced health benefits. Proceedings of the Nutrition Society, 76(2), 163–171. https://pubmed.ncbi.nlm.nih.gov/27804893/
Mohammadigheisar, M., Shirley, R.B., Barton, J., Welsher, A., Thiery, P. & Kiarie, E. (2019). Growth performance and gastrointestinal responses in heavy Tom turkeys fed antibiotic free corn soybean meal diets supplemented with multiple doses of a single strain Bacillus subtilis probiotic (DSM29784). Poultry Science, 98, 5541–5550. https://doi.org/10.3382/ps/pez305
Mudgil D. & Barak S, (2020). Mesquite gum (Prosopis gum): Structure, properties & applications - A review. International Journal of Biological Macromolecules, 159(15), 1094-1102. https://doi.org/10.1016/j.ijbiomac.2020.05.153
Oboh, G., Ademosun, A., Akinleye, M., Omojokun, O., Boligon, A. & Athayde, M. (2015). Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits. Journal Ethnic Foods, 2(1), 264-273. https://core.ac.uk/download/pdf/82500992.pdf
Phillips, A.O. & Phillips, G.O. (2011). Biofunctional behavior and health benefits of a specific gum Arabic. Food Hydrocolloids, 25, 165–169. https://doi.org/10.1016/j.foodhyd.2010.03.012
Park, I., Lee, Y., Goo, D., Zimmerman, N.P., Smith, A.H., Rehberger, T., & Lillehoj, H.S., (2020). The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99, 725–733. https://www.sciencedirect.com/science/article/pii/S0032579119579123?via %3Dihub
Rincón F., Clamens C., Beltrán O., Sanabria L. & Vásquez I (2020). Composición nutricional de la goma de semilla de Prosopis juliflora. Revista de la Facultad de Agronomía (LUZ), 37 (Supl1), 189-194. https://produccioncientificaluz.org/index.php/agronomia/article/view/33084
Rincón-Acosta, F., Félix López, M. E., Hurtado, E. A., Guerrero-Castillo, R. & Beltrán, O. (2023). Surfactant properties and emulsifying activity of the gum exudate of Prosopis juliflora (Sw.) DC, Revista de la Facultad de Agronomía (LUZ), 40(2), 1-6. https://produccioncientificaluz.org/index.php/agronomia/article/view/39955
Smith, J.A. (2019). Broiler production without antibiotics: United States field perspectives. Animal Feed Science and Technology, 250, 93–98. https://www.sciencedirect.com/science/article/pii/S0377840118302050?via %3Dihub
Vasile F. E., Romero A. M., Judis M. A., Mattalloni M., Virgolini M. B. & Mazzobre M. F. (2019). Phenolics composition, antioxidant properties and toxicological assessment of Prosopis alba exudate gum. Food Chemistry, 285, 369–379. https://doi.org/10.1016/j.foodchem.2019.02.003.
Wang, X., Farnell, Y.Z., Peebles, E.D., Kiess, A.S., Wamsley, K.G.S. & Zhai, W. (2016). Effects of prebiotics, and their combination on growth performance, small intestine morphology and resident Lactobacillus of male broilers. Poultry Science, 95, 1332–1340. https://doi.org/10.3382/ps/pew030
Wang, Y., Heng, C., Zhou, X., Cao, G., Jiang, L., Wang, J., Li, K., Wang, D. & Zhan, X., (2020). Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response, and the intestinal barrier of broiler chickens. British Journal of Nutrition, 125, 1–14 https://doi.org/10.1017/S0007114520002755
Wang, X., Kiess, A.S., Peebles, E.D., Wamsley, K.G.S. & Zhai, W. (2018). Effects of Bacillus subtilis and zinc on the growth performance, internal organ development and intestinal morphology of male broilers with or without subclinical coccidia challenge. Poultry Science, 97, 3947–3956. https://doi.org/10.3382/ps/pey262
Xiong, W., Wang, Y., Sun, Y., Ma, L., Zeng, Q., Jiang, X. & Zhang, T. (2018). Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome, 6, 1–11. https://doi.org/10.1186/s40168-018-0419-2
Derechos de autor 2024 Fernando Rincón-Acosta, Ernesto Antonio Hurtado, Cesar Robalino-Briones, Paul Aguilar-Camba
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.