Efeito da secagem por radiação infravermelha na qualidade sensorial em xícara para cafés (Coffea arabica) especiais

Palavras-chave: Aquecimento, degustação, eletromecânico,, organoléptico, SCAA

Resumo

O processo de secagem do café (Coffea arabica) é importante para alcançar características organolépticas de qualidade. O objetivo do estudo foi avaliar o efeito da secagem por meio de um sistema eletromecânico baseado em infravermelho na qualidade sensorial da xícara para cafés especiais. Para isso, foi projetado um sistema eletromecânico utilizando emissores infravermelhos que combina radiação eletromagnética com aquecimento convectivo convencional. Foram coletadas 75 amostras de café em três (3) níveis de altura. As amostras passaram pelo processo de secagem tradicional e pelo sistema eletromecânico, para posteriormente serem avaliadas por provadores profissionais sob a escala SCAA (Specialty Coffee Association of America). As amostras secas com infravermelho a 12% de umidade apresentaram um valor de degustação de 82,93 para xícara de café com dispersão de dados menor que o sistema tradicional que obteve 81,34, além disso o teste t de amostras não equivalentes indica que seu valor é significativamente melhor (p<0,05). Conclui-se que o sistema eletromecânico com secagem por infravermelho aumentou a qualidade sensorial do café em relação à secagem tradicional.

Downloads

Não há dados estatísticos.

Referências

Adonis, M. & Khan, M. T. E. (2004). Combined convective and infrared drying model for food applications. 2004 IEEE Africon. 7th Africon Conference in Africa (IEEE Cat. No.04CH37590), 2, 1049–1052. https://doi.org/10.1109/AFRICON.2004.1406850
Aghbashlo, M. (2015). A proposed mathematical model for exergy analysis of an infrared (IR) drying process. International Journal of Exergy, 18(4), 480–500. https://doi.org/10.1504/IJEX.2015.072912
Bote, A. D. & Jan, V. (2021). Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS: Wageningen Journal of Life Sciences, 83(1), 39–46. https://doi.org/10.1016/J.NJAS.2017.09.002
Castellanos, J. M., Quintero, C. S. & Carreno, R. (2018). Changes on chemical composition of cocoa beans due to combined convection and infrared radiation on a rotary dryer. 3rd International Congress of Mechanical Engineering and Agricultural Science (CIIMCA 2017), 437(1), 012011. https://doi.org/10.1088/1757-899X/437/1/012011
Chunshan, L., Siyu, C., Wenfu, W., Rui, W. & Hao, Z. (2016). Experimental study on Heat Transfer Effect of Far Infrared Convection Combined Drying. 2016 International Conference on Intelligent Transportation, Big Data and Smart City, ICITBS 2016, 505–508. https://doi.org/10.1109/ICITBS.2016.38
Cueva Alegría, D. (2020). Branding of an Ethical Development Narrative: Fair Trade, Gender, and Peru’s Café Femenino. In Handbook of the Changing World Language Map (Vol. 1, pp. 4001–4015). Springer, Cham. https://doi.org/10.1007/978-3-030-02438-3_163
Devan, P. K., Bibin, C., Asburris Shabrin, I., Gokulnath, R. & Karthick, D. (2020). Solar drying of fruits – A comprehensive review. International Conference on Future Generation Functional Materials and Research 2020, 33, 253–260. https://doi.org/10.1016/J.MATPR.2020.04.041
Díaz Vargas, C. & Willems, M. C. (2017). Línea de Base del Sector Café en el Perú. https://www.midagri.gob.pe/portal/pncafe-publicaciones/20118-linea-de-base-del-sector-cafe-en-el-peru
Guevara-Sánchez, M., Bernales del Águila, C. I., Saavedra-Ramírez, J. & Owaki-López, J. J. (2019). Efecto de la altitud en la calidad del café (Coffea arabica L.): comparación entre secado mecánico y tradicional. Scientia Agropecuaria, 10(4), 505–510. https://doi.org/10.17268/SCI.AGROPECU.2019.04.07
International Coffee Organization. (2021). Historical Data on the Global Coffee Trade. https://www.ico.org/new_historical.asp?section=Statistics
Kaveh, M., Abbaspour-Gilandeh, Y., Fatemi, H. & Chen, G. (2021). Impact of different drying methods on the drying time, energy, and quality of green peas. Journal of Food Processing and Preservation, 45(6), e15503. https://doi.org/10.1111/JFPP.15503
Lao, Y., Zhang, M., Chitrakar, B., Bhandari, B. & Fan, D. (2019). Efficient Plant Foods Processing Based on Infrared Heating. Food Reviews International, 35(7), 640–663. https://doi.org/10.1080/87559129.2019.1600537
Leobet, E. L., Perin, E. C., Fontanini, J. I. C., Prado, N. V., Oro, S. R., Burgardt, V. C. F., Alfaro, A. T. & Machado-Lunkes, A. (2019). Effect of the drying process on the volatile compounds and sensory quality of agglomerated instant coffee. Drying Technology , 38(11), 1421–1432. https://doi.org/10.1080/07373937.2019.1644347
Márquez Romero, F., Julca Otiniano, A., Canto Saenz, M., Soplín Villacorta, H., Vargas Winstanley, S. & Huerta Fernández, P. (2016). Environmental sustainability in coffee farms after an organic certification process at la convencion (Cusco, Perú). Ecología Aplicada, 15(2), ág. 125-132. https://doi.org/10.21704/REA.V15I2.752
Meenu, M., Guha, P. & Mishra, S. (2017). Coupled heat and moisture transfer of a single mung bean grain based on IR heating. International Journal of Modeling, Simulation, and Scientific Computing, 8(2). https://doi.org/10.1142/S1793962317400013
Pan, Z. & Atungulu, G. G. (2010). Infrared Heating for Food and Agricultural Processing (1st ed.). CRC Press. https://doi.org/10.1201/9781420090994
Pérez-Escalante, J. J., Gómez-Chávez, I. A. & Estela-Escalante, W. D. (2021). Isolation of microorganisms from the feces of ring-tailed coati related to the production of “misha coffee” in the central forest of Peru and evaluation of some features of technological importance. Microbiological Research, 245, 126670. https://doi.org/10.1016/J.MICRES.2020.126670
Sirdey, N. & Lallau, B. (2020). How do producer organisations enhance farmers’ empowerment in the context of fair trade certification? Oxford Development Studies, 48(2), 166–180. https://doi.org/10.1080/13600818.2020.1725962
Specialty Coffee Association. (2021). Protocols & Best Practices. https://sca.coffee/research/protocols-best-practices
Su, Y., Zhang, M. & Mujumdar, A. S. (2015). Recent Developments in Smart Drying Technology. Drying Technology, 33(3), 260–276. https://doi.org/10.1080/07373937.2014.985382
Tesfa, M., Sualeh, A. & Mekonen, N. (2021). Assessment of the Effectiveness of Coffee De-mucilager and Driers for Physical and Sensorial Coffee Quality. World Journal of Food Science and Technology, 5(2), 36. https://doi.org/10.11648/J.WJFST.20210502.13
Vijayavenkataraman, S., Iniyan, S. & Goic, R. (2012). A review of solar drying technologies. Renewable and Sustainable Energy Reviews, 16(5), 2652–2670. https://doi.org/10.1016/J.RSER.2012.01.007
Zartha Sossa, J. W., Orozco, G. L., García Murillo, L. M., Peña Osorio, M. & Sánchez Suarez, N. (2021). Infrared Drying Trends Applied to Fruit. Frontiers in Sustainable Food Systems, 5, 115. https://doi.org/10.3389/fsufs.2021.650690
Zhang, W. P., Chen, C., Pan, Z., Xiao, H. W., Xie, L., Gao, Z. J. & Zheng, Z. A. (2019). Design and performance evaluation of a pilot-scale pulsed vacuum infrared drying (PVID) system for drying of berries. Drying Technology, 38(10), 1340–1355. https://doi.org/10.1080/07373937.2019.1639725
Publicado
2022-06-30
Como Citar
Guevara-Sánchez, M., Guevara-Sánchez, K., Quispe-Cubas, N., Valles-Coral, M., Navarro-Cabrera, J., & Pinedo, L. (2022). Efeito da secagem por radiação infravermelha na qualidade sensorial em xícara para cafés (Coffea arabica) especiais. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 39(3), e223936. Obtido de https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/38365
Secção
Tecnologia de Alimentos