Toxic effect of Ni(II) on urease activity in a anaerobic granular sludge

Efecto tóxico del Ni(II) sobre la actividad de la ureasa en un lodo anaeróbico granular

Keywords: biological treatment, chemical oxygen demand, enzymatic activity, methane production, microbial inhibition, wastewaters

Abstract

The entrance of toxic substances such as metals, metalloids and others into biological wastewater treatment systems causes the inhibition of microbial activity, leading to a decrease in the efficiency of pollutant removal. Therefore, certain techniques can be implemented to check the physiological stability of microorganisms, such as the measurement of enzymatic activity, which is highly sensitive, reliable and representative to the changes that occur in bioreactors. In this work, the toxic effect of nickel (Ni) on urease activity was evaluated in a granular anaerobic sludge, through laboratory tests at mesophilic conditions in batch reactors. Five reactors fed with synthetic wastewater containing concentrations of 0 (control), 0.5 (R1),10 (R2), 50 (R3) and 100 (R4) mgNi(II)/L were used, applying a hydraulic retention time of 24 h for 30 d. Every 3 d the levels of pH, total alkalinity, chemical oxygen demand, volume of biogas and methane, inhibition of methane production (IMP) and urease activity were quantified. The increase in Ni(II) concentrations led to a significant decrease (p<0.001) in urease activity, from 1.21 (control) to 0.27 (R4) mg/dL, accompanied by an increase in IMP up to 13.3 %. The toxic effect of Ni(II) on the physiological state of anaerobic microorganisms present in the granular sludge was evidenced, with urease activity inhibition and impairment of anaerobic digestion process, which reduces the efficiency of these biological treatment systems.

Downloads

Download data is not yet available.

Author Biographies

Julio Marín, Universidad del Zulia

Departamento de Ingeniería Sanitaria y Ambiental (DISA), Escuela de Ingeniería Civil, Facultad de Ingeniería, Universidad del Zulia, Maracaibo, Venezuela.

Karelis Fernández, Universidad del Zulia

Departamento de Ingeniería Sanitaria y Ambiental (DISA), Escuela de Ingeniería Civil, Facultad de Ingeniería, Universidad del Zulia, Maracaibo, Venezuela. 

Laugeny Díaz, Universidad del Zulia

Laboratorio de Microorganismos Fotosintéticos, Departamento de Biología, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela.

Nancy Angulo, Universidad del Zulia

Centro de Investigación del Agua (CIA), Facultad de Ingeniería, Universidad del Zulia, Maracaibo, Venezuela.

References

AMANI, T., M. NOSRATI y T. R. SREEKRISHNAN. 2010. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects − a review. Environ. Rev. 18: 255-278.

AMERICAN PUBLIC HEALTH ASSOCIATION (APHA), AMERICAN WATER WORKS ASSOCIATION (AWWA) y WATER ENVIRONMENT FEDERATION (WEF). 2017. Standard methods for the examination of water and wastewater. 23th Edition. American Public Health Association, Washington, D.C. USA.

AMIN, F. R., H. KHALID, H. EL-MASHAD, C. CHENA, G. LIUA y R. ZHANG. 2020. Functions of Bacteria and Archaea participating in the bioconversion of organic waste for methane production. Sci. Total Environ. 763: 143007.

APPELS, L., J. BAEYENS, J. DEGRÈVE y R. DEWIL. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34: 755-781.

ASHLEY, N. V., M. DAVIES y T. HURST.1982. The effect of increased nickel ion concentrations on microbial populations in the anaerobic digestion of sewage sludge. Water Res. 16: 963-971.

BOE, K. 2006. Online monitoring and control of the biogas process. Tesis doctoral. Technical University of Denmark, Lyngby.

CASTRO, C., J. LONDOÑO y J. MORALES. 2004. Efecto de los metales pesados cadmio y níquel sobre la producción de metano de un lodo anaerobio a escala de laboratorio. Trabajo de grado. Universidad de Antioquia, Medellín.

CHACÍN, E. 1993.Treatment characteristics of two phase anaerobic system using an UASB reactor. Tesis doctoral. University of Birmingham, England.

CHENG, L. y R. CORD-RUWISCH. 2013. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture. J. Indian Microbiol. Biotechnol. 40: 1095-1104.

FANG, H. H. P. y H. H. HUI. 1994. Effect of heavy metals on the methanogenic activity of starch-grading granules. Biotechnol. Lett. 16: 1091-1096.

FERNÁNDEZ, N. 1993.An examination of anaerobic treatment of wastewater from coffee industries. Tesis doctoral. University of Birmingham, England.

GENCHI, G., A. CAROCCI, G. LAURIA, M. S. SINICROPI y A. CATALANO. 2020. Nickel: human health and environmental toxicology. Int. J. Environ. Res. PublicHealth 17: 679-685.

HENRÍQUEZ, C., L. URIBE, A. VALENCIANO y R. NOGALES. 2014. Actividad enzimática del suelo −deshidrogenasa, β-glucosidasa, fosfatasa y ureasa− bajo diferentes cultivos. Agronomía Costarricense, 38(1): 43-54.

JULIASTUTI, S. R., J. BAEYENS, C. CREEMERS, D. BIXIO y E. LODEWYCKX. 2003. The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge. J. Hazard. Mater.100: 271-83.

KANDELER, E. y H. GERBER.1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6: 68-72.

KAPPAUN, K., A. R. PIOVESAN, C. R. CARLINI y R. LIGABUE-BRAUN. 2018. Ureases: historical aspects, catalytic, and non-catalytic properties – a review. J. Adv. Res. 13: 3-17.

KHANAL, S. K. 2008.Overview of anaerobic biotechnology. Chapter 1.pp. 1-27, en Anaerobic Biotechnology for Bioenergy Production: Principles and Applications. Wiley and Blackwell Publishing, Iowa, USA.

LE, V. N. y T. S. DAO. 2016. Highly potent toxicity of nickel in river water to Daphnia lumholtzi. Int. J. Dev. Res. 6(9): 9526-9531.

LI, Y., Y. CHEN y J. WU. 2019. Enhancement of methane production in anaerobic digestion process: a review. Applied Energy 240: 120-137.

LORENZO, Y. y M. OBAYA. 2005. La digestión anaerobia. Aspectos teóricos. Parte I. ICIDCA. Sobre los Derivados de la Caña de Azúcar XXXIX(1): 35-48.

MACOMBER, L. y R. P. HAUSINGER. 2011. Mechanisms of nickel toxicity in microorganisms. Metallomics 3(11): 1153-1162.

MADIGAN, M. T., J. M. MARTINKO y J. PARKER. 1998. Brock, biología de los microorganismos. 8va edición. Prentice-Hall, Inc., Madrid.

MALAKAHMAD, A., S. ISHAK, U. N. NASOHA, M. H. ISA Y S. R. KUTTY. 2012. Application of sequencing batch reactor (SBR) for treatment of refinery wastewater containing nickel. WIT Transactions on Ecology and The Environment 164: 403-411.

MARÍN, J., M. CHÁVEZ, A. DÍAZ, L. POZO y N. FERNÁNDEZ. 2002. Monitoreo y control de reactores anaeróbicos utilizando presiones parciales de hidrógeno. Rev. Téc. Fac. Ing. LUZ 25(3): 140-148.

MAZZEI, L., F. MUSIANI y S. CIURLI. 2017. Urease. pp. 60-97, en D. B. Zamble, M. Rowinska-Zyrek y H. Kozlowski (eds.), The Biological Chemistry of Nickel. The Royal Society of Chemistry, London, UK.

MAZZEI, L., F. MUSIANI y S. CIURLI. 2020. The structure based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J. Biol. Inorg. Chem. 25: 829-845.

MIŚKOWIEC, P. y Z. OLECH. 2020. Searching for the correlation between the activity of urease and the content of nickel in the soil samples: the role of metal speciation. J. Soil Sci. Plant Nutr. 20:1904-1911.

MUDHOO, A. y S. KUMAR. 2013. Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int. J. Environ. Sci. Technol. 10: 1383-1398.

NEMEROW, N. L. y A. DASGUPTA.1998. Tratamiento de vertidos industriales y peligrosos. Ediciones Díaz de Santos, S. A., Madrid.

PETERS, A., G. MERRINGTON y S. KOSMALA-GRZECHNIK. 2014. Parameterisation of biotic ligand models for nickel to Australian test species. WCA Environment Ltd Report to NiPERA, WCA Environment, Faringdon, UK.

SPEECE, R. 1983. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 45(12): 1-11
SVANE, S., J. J. SIGURDARSON, F. FINKENWIRTH, T. EITINGER y H. KARRING. 2020. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Scientific Reports10: 8503.

TSAPEKOS, P., M. ALVARADO-MORALES, J. TONG E I. ANGELIDAKI. 2018. Nickel spiking to improve the methane yield of sewage sludge. Bioresour. Technol. 270: 732-737.

VINTILOIU, A., M. BOXRIKER, A. LEMMER, H. OECHSNER, T. JUNGBLUTH, E. MATHIES y D. RAMHOLD. 2013. Effect of ethylenediaminetetraacetic acid (EDTA) on the bioavailability of trace elements during anaerobic digestion. Chem. Eng. J. 223: 436-441.

VOLESKY, B. 1990. Biosorption of heavy metals. CRC Press, Boca Raton, USA.

WANG, S., U. JENA y K. C. DAS. 2018. Biomethane production potential of slaughterhouse waste in the United States. Energy Conv. Manag.173: 143-157.

ZAYED, G. y J. WINTER. 2000. Inhibition of methane production from whey by heavy metals −protective effect of sulfide. Appl. Environ. Microbiol. 53(6): 726-731.
Published
2021-12-16
How to Cite
Marín, J., Fernández, K., Díaz, L., & Angulo, N. (2021). Toxic effect of Ni(II) on urease activity in a anaerobic granular sludge: Efecto tóxico del Ni(II) sobre la actividad de la ureasa en un lodo anaeróbico granular. Boletín Del Centro De Investigaciones Biológicas, 55(2), 222-239. https://doi.org/10.5281/zenodo.5781246